SECTION A

Prove that a subgroup of a cyclic group is cyclic. Let G be a cyclic group Q1. (a) with generator a. If the order of G is infinite, then prove that G is isomorphic to $(\mathbb{Z}, +)$.

8

Find the relative extrema of the function (b) $f(x, y) = 4y^3 + x^2 - 12y^2 - 36y + 2.$

8

Prove that in the interval 0 < x < 1, the function $f(x) = x^2$ is uniformly (c) continuous while $f(x) = \frac{1}{x}$ is not uniformly continuous.

8

Prove that $x_1 = 2$, $x_2 = 1$, $x_3 = 0$ is a feasible solution to the following (d) set of equations:

$$2x_1 - x_2 + 3x_3 = 3$$
$$-6x_1 + 3x_2 + 7x_3 = -9$$

8

Is the solution basic? Justify your answer. If the solution is not basic, reduce it to a basic feasible one.

8

Find a bilinear transformation which maps the points z = 0, -i, -1 into (e) w = i, 1, 0 respectively.

5

Q2. Prove that every group is isomorphic to a group of permutations. (a) (i)

5

Let $A = \{1, 2, 3\}$ and let S_3 denote the symmetric group on 3 elements. Then is S_3 an abelian or non-abelian group?

7

Find the volume of the region above the xy-plane bounded by the (b) (i) paraboloid $z = x^2 + y^2$ and the cylinder $x^2 + y^2 = a^2$.

8

Prove that $\lim_{M\to\infty} \int_{0}^{M} \frac{dx}{x^4+4} = \frac{\pi}{8}$. (ii)

(ji)

- (c) Let f(z) = ln (1 + z). Expand f(z) in a Taylor series about z = 0.

 Determine the region of convergence of the series.
 - (ii) Find Laurent series about the indicated singularity for the function

$$\frac{e^z}{(z-1)^2}$$
; $z=1$.

5

5

8

7

15

- Q3. (a) Prove that if $u_n(x)$, $n = 1, 2, 3, \dots$ are continuous in [a, b] and if $\sum u_n(x)$ converges uniformly to the sum S(x) in [a, b], then S(x) is continuous in [a, b]
 - (ii) Prove that an absolutely convergent series is convergent. Show that $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ is conditionally convergent.
 - (b) (i) If N is a normal subgroup of a group G and if H is any subgroup of G, then prove that

$$H \vee N = HN = NH$$

where H v N denotes the join of H and N.

- (ii) State the Second Isomorphism Theorem of groups and apply it to the case $G = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$, $H = \mathbb{Z} \times \mathbb{Z} \times \{0\}$ and $N = \{0\} \times \mathbb{Z} \times \mathbb{Z}$.
- (c) Consider the LPP:

Minimize

$$z = 10x_1 + 2x_2$$

subject to

$$x_1 + 2x_2 + 2x_3 \ge 1$$

$$x_1 - 2x_3 \ge -1$$

$$x_1 - x_2 + 3x_3 \ge 3$$
,

$$x_i \ge 0$$
, for $i = 1, 2, 3$.

Solve the dual of the above LPP and find the minimum value of z.

Q4. (a) (i) State and prove Cauchy's integral formula. Thus evaluate

$$\oint\limits_{C} \frac{\cos z}{z-\pi} \, \mathrm{d}z,$$

where C is the circle |z-1|=3.

8

(ii) State the Residue Theorem and apply it to evaluate

$$\oint_C \frac{e^z dz}{(z-1)(z+3)^2}$$

where C is given by $|z| = \frac{3}{2}$.

7

(b) Prove that the integral domain Z is a Unique Factorization Domain and a Euclidean Domain.

10

(c) Five workers perform five jobs and the operating cost is given below, but there is a restriction that the worker C cannot perform the third job and B cannot perform the fifth job. Find the optimal assignment and the optimal assignment cost.

15

	I	II	III	IV	v
A	24	29	18	32	19
В	17	26	34	22	J
C	27	16	7	17	25
	22				
E	28	16	31	24	27

SECTION B

- Q5. (a) Consider a particle of mass m moving in a plane under attractive force k directed towards the origin, where k > 0. Using the polar coordinates (r, θ) write the corresponding Lagrangian and obtain the equations of motion. Also show that the angular momentum is conserved.
 - (b) A function f, defined on [0, 1], is such that f(0) = 0, $f\left(\frac{1}{2}\right) = -1$, f(1) = 0. Find the quadratic polynomial p(x) which agrees with f(x) for $x = 0, \frac{1}{2}, 1$.

 If $\left|\frac{d^3f}{dx^3}\right| \le 1$ for $0 \le x \le 1$, show that $|f(x) p(x)| \le \frac{1}{12}$ for $0 \le x \le 1$.

8

8

8

- (c) Draw the logic circuit which realises the Boolean function $L = (A + B) \cdot (A + C) + C \cdot (A + B \cdot C)$ and simplify it. Draw the simplified circuit also.
- (d) In a 2-dimensional flow there are sources at (a, 0), (-a, 0) and sinks at (0, a), (0, -a), all are of equal strength. Determine the stream function and show that the circle through these four points is a streamline.
- (e) Solve

$$u_{xx} + \frac{10}{3} u_{xy} + u_{yy} = -\sin(x + y)$$

Q6. (a) Find the solution of

$$\mathbf{u_x} - \mathbf{u}\mathbf{u_y} + \mathbf{u} = 0$$

for the initial values $x_0(s) = 0$, $y_0(s) = s$, $u_0(s) = -2s$.

Does the solution break down for any finite x? Is the solution unique?

15

(b) Find a root of the equation $\sin x + \cos x = 1$, lying in (0, 2), by Regula-Falsi method, correct up to four significant digits.

(c) For a dynamical system having two degrees of freedom, the Lagrangian is given by $L = \frac{m}{2} (n^2 \dot{q}_1^2 + \dot{q}_2^2) - \frac{k}{2} (a^2 + q_2^2)$, where q_1 and q_2 are generalized coordinates. Find the corresponding equations of motion. Show further that the generalized momentum corresponding to q_1 is

Show that the system exhibits a simple harmonic motion with respect to the generalized coordinate 92.

15

10

15

1

Q7. (a) Solve:

$$\begin{aligned} \mathbf{u}_{tt} - \mathbf{u}_{xx} &= 0, \ 0 < \mathbf{x} < \mathbf{z}, \ t > 0 \\ \mathbf{u}(0, t) &= \mathbf{u}(2, t) = 0, \\ \mathbf{u}(\mathbf{x}, 0) &= \sin^3 \frac{\pi \mathbf{x}}{2}, \\ \mathbf{u}_t(\mathbf{x}, 0) &= 0. \end{aligned}$$

(b) Write down the flow-chart of Runge-Kutta method of 4th order to find y(0.8) for $\frac{dy}{dx} = xy$, y(0) = 2, taking h = 0.2.

Also solve the above IVP to find y(0.4) by Runge-Kutta method (4^{th} order) .

(c) Consider 2-dimensional Navier-Stokes equations of a steady fluid flow. Show that there exists a stream function $\Psi(x, y)$ for such a flow. Find the equation satisfied by $\Psi(x, y)$.

KE-B-MTH

Q8. (a) Show that

$$f(x, y, z, p, q) = x^2p^2 + y^2q^2 - 4 = 0$$

and g(x, y, z, p, q) = qy - a = 0, where a is a constant, are compatible and hence solve f(x, y, z, p, q) = 0. Is it complete integral a

15

15

(b) State the sufficient condition for convergence of the Gauss-Seidel iteration method and solve the following system of equations by using this method:

$$6.7x_1 + 1.1x_2 + 2.2x_3 = 20.5$$

$$2.1x_1 - 1.5x_2 + 8.4x_3 = 28.8$$

$$3 \cdot 1x_1 + 9 \cdot 4x_2 - 1 \cdot 5x_3 = 22 \cdot 9$$

(correct up to 3-significant digits)

(c) There is a doublet at (c, 0) in a 2-dimensional flow. A cylinder of radius a (a < c) with z-axis as axis of the cylinder was introduced into the flow. Find the complex potential and image system for the flow.</p>

10