IAS
 PREVIOUS YEARS QUESTIONS (2020-1983) SEGMENT-WISE

VECTOR ANALYSIS

2020

* For what value of a, b, c, is the vector field

$$
\begin{aligned}
\overline{\mathrm{V}}= & (-4 x-3 y+a z) \hat{\mathrm{i}}+(b x+3 y+5 z) \\
& \hat{\mathrm{j}}+(4 x+c y+3 z) \hat{\mathrm{k}}
\end{aligned}
$$

irrotational ? Hence, express $\overline{\mathrm{V}}$ as the gradient of a scalar function ϕ. Determine ϕ.
[10]

* For the vector function $\overline{\mathrm{A}}$, where
$\overline{\mathrm{A}}=\left(3 \mathrm{x}^{2}+6 y\right) \hat{\mathrm{i}}-14 y z \hat{\mathrm{j}}+20 x z^{2} \hat{k}, \quad$ calculate $\oint_{C} \overline{\mathrm{~A}} \cdot \mathrm{~d} \overline{\mathrm{r}}$ from $(0,0,0)$ to $(1,1,1)$ along the following paths :
(i) $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$
(ii) Straight lines joining $(0,0,0)$ to $(1,0,0)$, then to $(1,1,0)$ and then to $(1,1,1)$
(iii) Straight line joining $(0,0,0)$ to $(1,1,1)$

Is the result same in all the cases ? Explain the reason.
[15]

* Verify the Stokes' theorem for the vector field $\overline{\mathrm{F}}=x y \hat{i}+y z \hat{j}+x z \hat{k}$ on the surface S which is the part of the cylinder $\mathrm{z}=1-\mathrm{x}^{2}$ for $0 \leq \mathrm{x} \leq 1,-2 \leq \mathrm{y}$ ≤ 2; S is oriented upwards.
[20]
* Evaluate the surface integral
$\iint_{S} \nabla \times \bar{F} \cdot \hat{n} d S$ for $\bar{F}=y \hat{i}+(x-2 x z) \hat{j}-x y \hat{k}$ and S
is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the xy-plane.
[15]

2019

* Find the directional derivative of the function $x y^{2}$ $+y z^{2}+z x^{2}$ along the tangent to the curve $x=t$, $y=t^{2}$ and $z=t^{3}$ at the point $(1,1,1)$.
* Find the circulation of $\overrightarrow{\mathrm{F}}$ round the curve C , where $\overrightarrow{\mathrm{F}}=\left(2 x+y^{2}\right) \hat{\mathrm{i}}+(3 y-4 x) \hat{\mathrm{j}}$ and C is the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$ and the curve $y^{2}=x$ from $(1,1)$ to $(0,0)$.
[15]
* Find the radius of curvature and radius of torsion of the helix $x=a \cos u, y=a \sin u, z=a u \tan \alpha$.
[15]
* State Gauss divergence theorem. Verify this theorem for $\overrightarrow{\mathrm{F}}=4 \mathrm{x} \hat{\mathrm{i}}-2 \mathrm{y}^{2} \hat{\mathrm{j}}+\mathrm{z}^{2} \hat{\mathrm{k}}$, taken over the region bounded by $\mathrm{x}^{2}+\mathrm{y}^{2}=4, \mathrm{z}=0$ and $\mathrm{z}=3$.
* Evaluate by Stoke's theorem
$\oint_{C} e^{x} d x+2 y d y-d z$, where C is the curve $x^{2}+$
$y^{2}=4, z=2$.
[05]

2018

* Find the angle between the tangent at a general point of the curve whose equations are $x=3 t$, $y=3 t^{2}, z=3 t^{3}$ and the line $y=z-x=0$.
* If S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$,
then evaluate
$\iint[(x+z) d y d z+(y+z) d z d x+(x+y) d x d y]$ using
Gauss' divergence theorem.
* Find the curvature and torsion of the curve $\vec{r}=a(u-\sin u) \vec{t}+a(1-\cos u) \vec{j}+b u \vec{k}$
* Let $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$. Show that
$\operatorname{curl}(\operatorname{curl} \vec{v})=\operatorname{grad}(\operatorname{div} \vec{v})-\nabla^{2} \vec{v}$.
* Evaluate the line integral $\int_{C}-y^{3} d x+x^{3} d y+z^{3} d z$ using Stoke's theorem. Here C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=1$. The orientation on C corresponds to counterclockwice motion in the $x y$-plane.
(13)
* Let $\vec{F}=x y^{2} \vec{i}+(y+x) \vec{j}$. Integrate $(\nabla \times \vec{F}) " \vec{k}$ over the region in the first quadrant bounded by the curves $y=x^{2}$ and $y=x$ using Green's theorem. (13)

2017

* For what values of the constants a, b and c the vector
$\bar{V}=(x+y+a z) \hat{i}+(b x+2 y-z) \hat{j}+(-x+c y+2 z) \hat{k}$
is irrotational. Find the divergence in cylindrical coordinates of this vector with these values. (10)
* The position vector of a moving point at time t is $\vec{r}=\sin t \hat{i}+\cos 2 t \hat{j}+\left(t^{2}+2 t\right) \hat{k} . \quad$ Find the components of acceleration \bar{a} in the directions parallel to the velocity vector \bar{v} and perpendicular to the plane of \bar{r} and \bar{v} at time $\mathrm{t}=0$.
* Find the curvature vector and its magnitude at any point $\bar{r}=(\theta)$ ofthecurve $\bar{r}=(a \cos \theta, a \sin \theta, a \theta)$. Show that the locus of the feet of the perpendicular from the origin to the tangent is a curve that completely lies on the hyperboloid $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}^{2}=\mathrm{a}^{2}$.
(16)
* Evaluate the integral : $\iint_{S} \bar{F} \cdot \hat{n} d s$ where $\bar{F}=3 x y^{2} \hat{i}+\left(y x^{2}-y^{3}\right) \hat{j}+3 z x^{2} \hat{k}$ and S is a surface of the cylinder $y^{2}+z^{2} \leq 4,-3 \leq x \leq 3$, using divergence theorem.
* Using Green's theorem, evaluate the $\int_{C} F(\bar{r}) \cdot d \bar{r}$ counterclockwise where
$F(\bar{r})=\left(x^{2}+y^{2}\right) \hat{i}+\left(x^{2}-y^{2}\right) \hat{j}$
and $d \bar{r}=d x \hat{i}+d y \hat{j}$ and the curve C is the boundary
of the region
$R=\left\{(x, y) \mid 1 \leq y \leq 2-x^{2}\right\}$.

2016

* Prove that the vectors $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$, $\vec{b}=-\hat{i}+3 \hat{j}+4 \hat{k}, \quad \vec{c}=4 \hat{i}-2 \hat{j}-6 \hat{k}$ can form the sides of a triangle. Find the lengths of the medians of the triangle.
* Find $\mathrm{f}(\mathrm{r})$ such that $\nabla \mathrm{f}=\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{5}}$ and $\mathrm{f}(1)=0$.
\& Prove that

$$
\begin{equation*}
\oint_{C} \mathrm{f} d \overrightarrow{\mathrm{r}}=\iint_{\mathrm{S}} \mathrm{~d} \overrightarrow{\mathrm{~S}} \times \nabla \mathrm{f} \tag{10}
\end{equation*}
$$

* For the cardioid $r=a(1+\cos \theta)$, show that the square of the radius of curvature at any point (r, θ) is proportional to r. Also find the radius of curvature if $\theta=0, \frac{\grave{A}}{4}, \frac{\grave{A}}{2}$.

2015

* Find the angle between the surfaces $x^{2}+y^{2}+z^{2}-9=0$ and $z=x^{2}+y^{2}-3$ at $(2,-1,2)$.
* Find the value of λ and μ so that the surfaces $\lambda x^{2}-\mu y z=(\lambda+2) x$ and $4 x^{2} y+z^{3}=4$ may intersect orthogonally at $(1,-1,2)$.
* A vector field is given by
$\vec{F}=\left(x^{2}+x y^{2}\right) \hat{i}+\left(y^{2}+x^{2} y\right) \hat{j}$
Verify that the field \vec{F} is irrotational or not. Find the scalar potential.
* Evaluate $\int_{C} e^{-x}(\sin y d x+\cos y d y)$, where C is the rectangle with vertices $(0,0),(\pi, 0)$, $\left(\pi, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$.

2014

* Find the curvature vector at any point of the curve $\bar{r}(t)=t \cos t \hat{i}+t \sin t \hat{j}, 0 \leq t \leq 2 \pi$. Give its
magnitude also.
* Evaluate by Stokes' theorem
$\int_{\Gamma}(y d x+z d y+x d z)$
where Γ is the curve given by
$x^{2}+y^{2}+z^{2}-2 a x-2 a y=0, x+y=2 a$, starting from $(2 a, 0,0)$ and then going below the z-plane.
(20)

2013

* Show that the curve
$\vec{x}(t)=t \hat{i}+\left(\frac{1+t}{t}\right) \hat{j}+\left(\frac{1-t^{2}}{t}\right) \hat{k}$
lies in a plane.
* Calculate $\nabla^{2}\left(r^{n}\right)$ and find its expression in terms of r and n, r being the distance of any point (x, y, z) from the origin, n being a constant and ∇^{2} being the Laplace operator.
(10)
* A curve in space is defined by the vector equation $\vec{r}=t^{2} \hat{i}+2 t \hat{j}-t^{3} \hat{k}$. Determine the angle between the tangents to this curve at the points $t=+1$ and $t=-1$.
* By using Divergence Theorem of Gauss, evaluate the surface integral
$\iint\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)^{-1 / 2} d S$,
where S is the surface of the ellipsoid
$a x^{2}+b y^{2}+c z^{2}=1, a, b$ and c being all positive
constants.
* Use Stokes theorem to evaluate the line integral $\int_{C}\left(-y^{3} d x+x^{3} d y-z^{3} d z\right)$, where C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=1$.
(15)

2012

* If $\vec{A}=x^{2} y z \vec{i}-2 x z^{3} \vec{j}+x z^{2} \vec{k}$
$\vec{B}=2 z \vec{i}+y \vec{j}-x^{2} \vec{k}$
Find the value of $\frac{\partial^{2}}{\partial x \partial y}(\vec{A} \times \vec{B})$ at $(1,0,-2)$. (12)
* Derive the Frenet-Serret formulae.

Define the curvature and torsion for a space curve. Compute them for the space curve $x=t, y=t^{2}, z=\frac{2}{3} t^{3}$

Show that the curvature and torsion are equal for this curve.
(20)

* Verify Green's theorem in the plane for
$\oint_{C}\left\{\left\{x y+y^{2}\right\} d x+x^{2} d y\right\}$
where C is the closed curve of the region bounded I by $y=x$ and $y=x^{2}$.
(20)
* If $\vec{F}=y \vec{i}+(x-2 x z) \vec{j}-x y \vec{k}$, evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d \vec{S}$
where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the xy-plane.
(20)

2011

* For two vectors \vec{a} and \vec{b} given respectively by $\vec{a}=5 t^{2} \hat{i}+t \hat{j}-t^{3} \hat{k}$ and $\vec{b}=\sin t \hat{i}-\cos t \hat{j}$

Determine: $(i) \frac{d}{d t}(\vec{a} \cdot \vec{b})$ and $(i i) \frac{d}{d t}(\vec{a} \times \vec{b})$

* If u and v are two scalar fields and \vec{f} is a vector field, such that $u \vec{f}=\operatorname{grad} v$, find the value of $\vec{f} \cdot$ curl \vec{f}
* Examine whether the vectors $\nabla u, \nabla v$ and ∇w are coplanar, where u, v and w are the scalar functions defined by: $u=x+y+z, v=x^{2}+y^{2}+z^{2}$ and
$w=y z+z x+x y$.
* If $\vec{u}=4 y \hat{i}+x \hat{j}-2 z \hat{k}$, calculate the double integral $\iint(\nabla \times \vec{u}) \cdot d \vec{s}$ over the hemisphere given by $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$.
* If \vec{r} be the position vector of a point, find the value(s) of n for which the vector $r^{n} \vec{r}$ is
(i) irrotational, (ii) solenoidal.
(15)
* Verify Gauss Divergence Theorem for the vector $\vec{v}=x^{2} \hat{i}+y^{2} \hat{j}-z^{2} \hat{k}$ taken over the cube $0 \leq x, y, z \leq 1$.

2010

* Findthe directional derivative of $f(x, y)=x^{2} y^{3}+x y$ at the point $(2,1)$ in the direction of a unit vector which makes an angle of $\pi / 3$ with the $x-$ axis.
* Show that the vector field defined by the vector function $\vec{V}=x y z(y z \vec{i}+x z \vec{j}+x y \vec{k}) \quad$ is conservative.
* Prove that $\operatorname{div}(f \vec{V})=f(\operatorname{div} \vec{V})+(\operatorname{grad} f) \vec{V}$ where f is a scalar function.
* Use the divergence theorem to evaluate $\iint_{S} \vec{V} \cdot \vec{n} d A$ where $\vec{V}=x^{2} z \vec{i}+y \vec{j}-x z^{2} \vec{k}$ and S is the boundary of the region bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $\mathrm{z}=4 \mathrm{y}$.
* Verify Green's theorem for ;
$e^{-x} \sin y d x+e^{-x} \cos y d y$ the path of integration being the boundary of the square whose vertices are $(0,0),(\pi / 2,0),(\pi / 2, \pi / 2)$ and $(0, \pi / 2)$.

2009

* Show that $\operatorname{div}\left(\operatorname{grad} r^{n}\right)=n(n+1) r^{n-2}$

Where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.

* Find the directional derivatives of -
(i) $4 x z^{3}-3 x^{2} y^{2} z^{2}$ at $(2,-1,2)$ along z - axis;
(ii) $x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$.
* Find the work done in moving the particle once round the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, z=0$ under the field of force given by

$$
\begin{equation*}
\vec{F}=(2 x-y+z) \hat{i}+\left(x+y-z^{2}\right) \hat{j}+(3 x-2 y+4 z) \hat{k} \tag{20}
\end{equation*}
$$

* Using divergence theorem, evaluate
$\iint_{S} \vec{A} \cdot d \vec{S}$ where $\vec{A}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
* Find the value of $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot d \vec{S}$
taken over the upper portion of the surface $x^{2}+y^{2}-2 a x+a z=0$ and the bounding curve lies
in the plane $\mathrm{z}=0$, when

$$
\begin{equation*}
\vec{F}=\left(y^{2}+z^{2}-x^{2}\right) \hat{i}+\left(z^{2}+x^{2}-y^{2}\right) \hat{j}+\left(x^{2}+y^{2}-z^{2}\right) \hat{k} . \tag{20}
\end{equation*}
$$

2008

* Find the constants ' a ' and ' b ' so that the surface $a x^{2}-b y z=(a+2) x$ will be orthogonal to the surface $4 x^{2} y+z^{3}=4$ at the point $(1,-1,2)$
* Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential for \vec{F} and the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.
P.T $\nabla^{2} f(r)=\frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r}$ where $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$

Hence find $\mathrm{f}(\mathrm{r})$ such that $\nabla^{2} f(r)=0$.

* Show that for the space curve $x=t, y=t^{2}, z=\frac{2}{3} t^{3}$ the curvature and torsion are same at every point.
* Evaluate $\int \vec{A} \cdot d \vec{r}$ along the curve $x^{2}+y^{2}=1, z=1$
from $(0,1,1)$ to $(1,0,1)$ if
$\vec{A}=(y z+2 x) \hat{i}+x z \hat{j}+(x y+2 z) \hat{k}$.
* Evaluate $\iint_{s} \vec{F} \cdot \hat{n} d S$ where $\vec{F}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$
and ' S ' is the surface of the cylinder bounded by $x^{2}+y^{2}=4, \mathrm{z}=0$ and $\mathrm{z}=3$.

2007

* If \vec{r} denotes the position vector of a point and if \hat{r} be the unit vector in the direction of $\vec{r}, r=|\vec{r}|$ determine grad $\left(r^{-1}\right)$ in terms of \hat{r} and r.
* Find the curvature and torsion at any point of the curve $x=a \cos 2 t, y=a \sin 2 t, z=2 a \sin t$

For any constant vector \vec{a} show that the vector represented by curl $(\vec{a} \times \vec{r})$ is always parallel to the vector \vec{a}, \vec{r} being the position vector of a point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$, measured from the origin.

* If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ find the value(s) of n in order that $r^{n} \vec{r}$ may be (i) solenoidal or (ii) irrotational
- Determine $\int_{C}(y d x+z d y+x d z)$ by using Stoke's theorem, where ' C ' is the curve defined by $(x-a)^{2}+(y-a)^{2}+z^{2}=2 a^{2}, x+y=2 a$ that starts from the point $(2 \mathrm{a}, 0,0)$ and goes at first below the z - plane.

2006

* Find the values of constant a, b, and c so that the directional of the function $f=a x y^{2}+b y z+c z^{2} x^{3}$
at the point $(1,2,-1)$ has maximum magnitude 64 in the direction parallel to Z-axis.
* If $\vec{A}=2 \hat{i}+\hat{k}, \vec{B}=\hat{i}+\hat{j}+\hat{k}, \vec{C}=4 \hat{i}-3 \hat{j}-7 \hat{k}$, determine a vector \vec{R} satisfying the vector equations

$$
\vec{R} \times \vec{B}=\vec{C} \times \vec{B} \text { and } \vec{R} \cdot \vec{A}=0
$$

* Prove that $r^{n} \vec{r}$ is an irrotational vector for any value of n , but is solenoidal only if $\mathrm{n}+3=0$.
* If the unit tangent vector \vec{t} and binormal \vec{b} makes angles θ and ϕ respectively with a constant unit vector \vec{a}, prove that $\frac{\sin \theta}{\sin \phi} \cdot \frac{d \theta}{d \phi}-\frac{k}{\tau}$
* Verify Stoke's theorem for the function $\vec{F}=x^{2} \hat{i}-x y \hat{j}$ integrated round the square in the
plane $\mathrm{z}=0$ and bounded by the lines $\mathrm{x}=0, \mathrm{y}=0$, $x=a$ and $y=a, a>0$.

2005

* Show that the volume of the tetrahedron ABCD is $\frac{1}{6}(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A D}$. Hence find the volume of the tetrahedron with vertices $(2,2,2),(2,0,0),(0,2,0)$ and ($0,0,2$).
* Prove that the curl of a vector field is independent of the choice of co - ordinates.
* The parametric equation of a circular helix is $\vec{r}=a \cos u \hat{i}+a \sin u \hat{j}+c u \hat{k}$; where ' c ' is a constant and ' u ' is a parameter.
* Find the unit tangent vector \hat{t} at the point ' u ' and the arc length measured from $\mathrm{u}=0$. Also find $\frac{d \hat{i}}{d s}$, । where ' S ' is the arc length.
* Show that $\operatorname{curl}\left(\hat{k} \times \operatorname{grad} \frac{1}{r}\right)+\operatorname{grad}\left(\hat{k} \cdot \operatorname{grad} \frac{1}{r}\right)=0$ where r is the distance from the origin and \hat{k} is the unit vector in the direction OZ.
* Find the curvature and the torsion of the space curve $x=a\left(3 u-u^{3}\right), y=3 a u^{2}, \quad z=a\left(3 u+u^{3}\right)$.
* Evaluate $\oiint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)$ by Gauss divergence theorem, where S is the surface of the cylinde $x^{2}+y^{2}=a^{2}$ bounded by $\mathrm{z}=0$ and $\mathrm{z}=\mathrm{b}$.

2004

* Show that if \vec{A} and \vec{B} are irrotational, then $\vec{A} \times \vec{B}$ is solenoidal.
* Show that the Frenet - Serret formula can be written in the form
$\frac{d \vec{T}}{d s}=\vec{\omega} \times \vec{T}, \frac{d \vec{N}}{d s}=\vec{\omega} \times \vec{N}$ and $\frac{d \vec{B}}{d s}=\vec{\omega} \times \vec{B}$
Where, $\vec{\omega}=\tau \vec{T}+k \vec{B}$
* Prove the identity
$\nabla \nabla(\vec{A} \cdot \vec{B})=(\vec{B} \cdot \nabla) \vec{A}+(\vec{A} \cdot \nabla) \vec{B}+\vec{B} \times(\nabla \times \vec{A})+\vec{A} \times(\nabla \times \vec{B})$
* Derive the identity
$\iiint_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d \forall=\iint_{S}(\phi \nabla \psi-\psi \nabla \phi) . \hat{n} d S$,
where V is the volume bounded by the closed surface S .
* Verify Stoke's theorem for
$\vec{f}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$ where S is the upper
half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.

2003

* Show that if $\vec{a}^{\prime}, \vec{b}^{\prime}$ and \vec{c}^{\prime} are the reciprocals of the non - coplanar vectors \vec{a}, \vec{b} and \vec{c}, then any vector \vec{r} may be expressed as
$\vec{r}=\left(\vec{r} \cdot \vec{a}^{\prime}\right) \vec{a}+\left(\vec{r} \cdot \vec{b}^{\prime}\right) b+\left(\vec{r} \cdot \vec{c}^{\prime}\right) c$.
* Prove that the divergence of a vector field is invariant w. r. t co - ordinate transformations.
* Let the position vector of a particle moving on a plane curve be $\vec{r}(t)$, where t is the time. Find the components of its acceleration along the radial and transverse directions.
* Prove the identity $\nabla A^{2}=2(A . \nabla) A+2 A \times(\nabla \times A)$

Where $\nabla=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}$.

* Find the radii of curvature and torsion at a point of intersection of the surfaces

$$
x^{2}-y^{2}=c^{2}, y=x \tanh \left(\frac{z}{c}\right)
$$

* Evaluate \iint_{S} curl A.dS where S is the open surface

$$
\begin{aligned}
& x^{2}+y^{2}-4 x+4 z=0, z \geq 0 \quad \text { and } \\
& A=\left(y^{2}+z^{2}-x^{2}\right) \hat{i}+\left(2 z^{2}+x^{2}-y^{2}\right) \hat{j}+\left(x^{2}+y^{2}-3 z^{2}\right) \hat{k}
\end{aligned}
$$

- Show that curl $\frac{\vec{a} \times \vec{r}}{r^{3}}=-\frac{\vec{a}}{r^{3}}+\frac{3 \vec{r}}{r^{5}}(\vec{a} \cdot \vec{r})$ where \vec{a} is a constant vector.
* Find the directional derivative of $f=x^{2} y z^{3}$ along $x=e^{-t}, y=1+2 \sin t, z=t-\cos t$ at $\mathrm{t}=0$.
* Show that the vector field defined by $F=2 x y z^{3} \hat{i}+x^{2} z^{3} \hat{j}+3 x^{2} y z^{2} \hat{k}$ is irrotational. Find also the scalar ' u ' such that $F=$ grad u.
* Verify Gauss divergence theorem of $A=\left(4 x,-2 y^{2}, z^{2}\right)$ taken over the region bounded
by $x^{2}+y^{2}=4, z=0 \& z=3$.

2000

* In what direction from the point $(-1,1,1)$ is the directional derivative of $f=x^{2} y z^{3}$ a maximum? compute its magnitude.
* Show that
(i) $(A+B) \cdot(B+C) \times(C+A)=2 A \cdot B \times C$
(ii) $\nabla \times(A \times B)=(B . \nabla) A-B(\nabla \cdot A)-(A . \nabla) B+A(\nabla . B)$
(1990)
- Evaluate $\iint_{S} F \cdot \hat{n} d S$ where $F=2 x y \hat{i}+y z^{2} \hat{j}+x z \hat{k}$ and S is the surface of the parallelopiped bounded by $x=0, y=0, z=0, x=2, y=1$ and $z=3$

Hence or otherwise evaluate $\iint_{S}(f \operatorname{grad} f) \cdot \hat{n} d S$ for $\mathrm{f}=2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}$ over $S \equiv x^{2}+y^{2}+z^{2}=4$

* Find the values of constants a, b, and c such that the maximum value of directional derivative of $f=a x y^{2}+b y z+c x^{2} z^{2}$ at $(1,-1,1)$ is in the direction parallel to y axis and has magnitude 6 .

2001

* Find the length of the arc of the twisted curve $\vec{r}=\left(3 t, 3 t^{2}, 2 t^{3}\right)$ from the point $t=0$ to the point $t=1$. Find also the unit tangent \vec{t}, unit normal \vec{n} and the unit binormal \vec{b} at $t=1$.

1999

* If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors $\mathrm{A}, \mathrm{B}, \mathrm{C}$ prove that $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a vector perpendicular to the plane ABC .
* If $\vec{F}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, find $\nabla \times \vec{F}$.
* Evaluate $\int\left(e^{-x} \sin y d x+e^{-x} \cos y d y\right)$; (by Green's theorem), where ' C ' is the rectangle whose vertices are $(0,0),(\pi, 0)(\pi, \pi / 2) \&(0, \pi / 2)$.
* If X, Y, Z are the components of a contra variant vector in rectangular cartesian co-ordinates x, y, z in a three dimensional space, show that the components of the vector in cylindrical coordinates
r, θ, Z are $X \cos \theta+Y \sin \theta, \frac{-x}{\mathrm{r}} \sin \theta+\frac{y}{\mathrm{r}} \cos \theta, Z$

1998

* If r_{1} and r_{2} are the vectors joining the fixed points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ respectively to a variable point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, then find the values of $\operatorname{grad}\left(\mathrm{r}_{1} \cdot \mathrm{r}_{2}\right)$ and curl $\left(\mathrm{r}_{1} \times \mathrm{r}_{2}\right)$
* Show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if either $\vec{b}=0$ (or any other vector is ' 0 ') or \vec{c} is collinear with \vec{a} or \vec{b} is orthogonal to \vec{a} and \vec{c} (both).

1997

* Prove that if \vec{A}, \vec{B} and \vec{C} are three given non coplanar vectors, then any vector \vec{F} can be put in the form $\vec{F}=\alpha \vec{B} \times \vec{C}+\beta \vec{C} \times \vec{A}+\gamma \vec{A} \times \vec{B}$. For a given \vec{F} determine α, β, γ.
* Verify Gauss theorem for $\vec{F}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ taken over the region bounded by $x^{2}+y^{2}=4$, and $\mathrm{z}=0$ and $z=3$.

1996

* If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$, show that
(i) $\vec{r} \times \operatorname{grad} f(r)=0$
(ii) $\operatorname{div}\left(r^{n} \vec{r}\right)=(n+3) r^{n}$
* Verify Gauss divergence theorem for
$\vec{F}=x y \hat{i}+z^{2} \hat{j}+2 y z \hat{k}$, on the tetrahedron
$\mathrm{x}=\mathrm{y}=\mathrm{z}=0, \mathrm{x}+\mathrm{y}+\mathrm{z}=1$

1994

- If $\vec{F}=y \hat{i}+(x-2 x z) \hat{j}-x y \hat{k}$.
evaluate $\iint_{S}(\nabla \times \vec{F}) \cdot \mathrm{kI} \mathrm{d} d S$.
* Evaluate $\iint_{s} \nabla \times \vec{F} \cdot \hat{n} d s$, where S is the upper half surface of the unit sphere $x^{2}+y^{2}+z^{2}=1$ and $\vec{F}=z \hat{i}+x \hat{j}+y \hat{k}$.

1992

* If $\vec{f}(x, y, z)=\left(y^{2}+z^{2}\right) \hat{i}+\left(z^{2}+x^{2}\right) \hat{j}+\left(x^{2}+y^{2}\right) \hat{k}$ then calculate $\int_{C} \vec{f} . d \vec{x}$ where ' C ' consists of
(i) The line segment from $(0,0,0)$ to $(1,1,1)$
(ii) The three line segments AB, BC and CD , where A, B, C and D are respectively the points $(0,0,0),(1,0,0),(1,1,0)$ and $(1,1,1)$
(iii) The curve $\vec{x}=u \hat{i}+u^{2} \hat{j}+u^{3} \hat{k}$, u from 0 to 1 .
* If \vec{a} and \vec{b} are constant vectors, show that
(i) $\operatorname{div}\{\vec{x} \times(\vec{a} \times \vec{x})\}=-2 \vec{x} \cdot \vec{a}$
(ii) $\operatorname{div}\{(\vec{a} \times \vec{x}) \times(\vec{b} \times \vec{x})\}=2 \vec{a} \cdot(\vec{b} \times \vec{x})-2 \vec{b} \cdot(\vec{a} \times \vec{x})$

1991

* If ϕ be a scalar point function and F be a vector point function, show that the components of F normal and tangential to surface $\phi=0$ at any point there of are $\frac{(F . \nabla \phi) \nabla \phi}{(\nabla \phi)^{2}}$ and $\frac{\nabla \phi \times(F \times \nabla \phi)}{(\nabla \phi)^{2}}$
* Find the value of \int curl F. dS taken over the portion of the surface $x^{2}+y^{2}-2 a x+a z=0$, for which $\mathrm{z} \geq 0$,
when $F=\left(y^{2}+z^{2}-x^{2}\right) \hat{i}+\left(z^{2}+x^{2}-y^{2}\right) \hat{j}+\left(x^{2}+y^{2}-z^{2}\right) \hat{k}$.

1989

* Define the curl of a vector point function
* Prove that $\nabla \times\left(\frac{\vec{r}}{r^{2}}\right)=0$ where $\vec{r}=(x, y, z)$ and $r=|\vec{r}|$.

1988

* Define the divergence of a vector point function, prove that $\operatorname{div}(\vec{u} \times \vec{v})=\vec{v} . \operatorname{curl} \vec{u}-\vec{u} . \operatorname{curl} \vec{v}$.
 geometric meaning.
(1990)

1986

* Let \vec{a}, \vec{b} be given vectors in the three dimensional Euclidean space E_{3} and let $\phi(\vec{x})$ be a scalar field of the vectors \vec{x} also of E_{3}.

If $\phi(\vec{x})=(\vec{x} \times \vec{a}) \cdot(\vec{x} \times \vec{b})$, show that grad
$\phi(i . e, \nabla \phi(\vec{x}))=\vec{b} \times(\vec{x} \times \vec{a})+\vec{a} \times(\vec{x} \times \vec{b})$.

* If \vec{f}, \vec{g} are two vector fields in E_{3} and if 'div', । 'curl' are defined on an open set $S \subset E_{3}$ show that $\operatorname{div}(\vec{f} \times \vec{g})=\vec{g} . \operatorname{curl} \vec{f}-\vec{f} . \operatorname{curl} \vec{g}$.

1985

* If P,Q,R are points $(3,-2,-1),(1,3,4),(2,1,-2)$ respectively. Find the distance from P to the plane I OQR , where ' O ' is the origin.
* Find the angle between the tangents to the curve I $\vec{r}=t^{2} \hat{i}-2 t \hat{j}+t^{3} \hat{k}$ at the points $\mathrm{t}=1$ and $\mathrm{t}=2$

$$
F=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)
$$

1983

* Prove that curl $(\operatorname{curl} F)=\operatorname{grad} \operatorname{div} \mathrm{F}-\nabla^{2} F$.

* Find div F and curl F, where

IFoS
 PREVIOUS YEARS QUESTIONS (2020-2000) SEGMENT-WISE

VECTOR ANALYSIS
(ACCORDING TO THE NEW SYLLABUS PATTERN) PAPER -

2020

* Prove that for a vector \vec{a},
$\nabla(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{r}})=\overrightarrow{\mathrm{a}}$; where $\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}, \mathrm{r}=|\overrightarrow{\mathrm{r}}|$.
Is there any restriction on $\overrightarrow{\mathrm{a}}$?
Further, show that
$\overrightarrow{\mathrm{a}} \cdot \nabla\left(\overrightarrow{\mathrm{b}} \cdot \nabla \frac{1}{\mathrm{r}}\right)=\frac{3(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{r}})(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{r}})}{\mathrm{r}^{5}}-\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{\mathrm{r}^{3}}$
Give an example to verify the above.
* A tangent is drawn to a given curve at some point of contact. B is a point on the tangent at a distance 5 units from the point of contact. Show that the curvature of the locus of the point B is

$$
\frac{\left[25 \kappa^{2} \tau^{2}\left(1+25 \kappa^{2}\right)+\left(\kappa+5 \frac{\mathrm{~d} \kappa}{\mathrm{ds}}+25 \kappa^{3}\right)\right]^{1 / 2}}{\left(1+25 \kappa^{2}\right)^{3 / 2}}
$$

Find the curvature and torsion of the curve
$\overrightarrow{\mathrm{r}}=\mathrm{t} \hat{\mathrm{i}}+\mathrm{t}^{2} \hat{\mathrm{j}}+\mathrm{t}^{3} \hat{\mathrm{k}}$.

* Given a portion of a circular disc of radius 7 units and of height 1.5 units such that $\mathrm{x}, \mathrm{y}, \mathrm{z} \geq 0$.
Verify Gauss Divergence Theorem for the vector field $\vec{f}=\left(z, x, 3 y^{2} z\right)$ over the surface of the above mentioned circular disc.
[15]
* Derive expression of $\nabla \mathrm{f}$ in terms of spherical coordinates.
Prove that $\nabla^{2}(\mathrm{fg})=\mathrm{f} \nabla^{2} \mathrm{~g}+2 \nabla \mathrm{f} \cdot \nabla \mathrm{g}+\mathrm{g} \nabla^{2} \mathrm{f}$
for any two vector point functions $\mathrm{f}(\mathrm{r}, \theta, \phi)$ and $\mathrm{g}(\mathrm{r}$, $\theta, \phi)$. Construct one example in three dimensions to verify this identity.
[10]

2019

* Let $\overline{\mathrm{r}}=\overline{\mathrm{r}}(\mathrm{s})$ represent a space curve. Find $\frac{\mathrm{d}^{3} \overrightarrow{\mathrm{r}}}{\mathrm{ds}^{3}}$ in terms of $\overline{\mathrm{T}}, \overline{\mathrm{N}}$ and $\overline{\mathrm{B}}$, where $\overline{\mathrm{T}}, \overline{\mathrm{N}}$ and $\overline{\mathrm{B}}$, represent tangent, principal normal and binormal
respectively. Compute $\frac{d \bar{r}}{d s} \cdot\left(\frac{d^{2} \bar{r}}{d s^{2}} \times \frac{d^{3} \bar{r}}{d s^{3}}\right)$ in
terms of radius of curvature and the torsion. (08)
- Evaluate $\int_{(0,0)}^{(2,1)}\left(10 x^{4}-2 x y^{3}\right) d x-3 x^{2} y^{2} d y$ along the path $x^{4}-6 x y^{3}=4 y^{2}$.
* Verify Stoke's theorem for
$\overline{\mathrm{V}}=(2 x-y) \hat{\mathrm{i}}-y z^{2} \hat{j}-y^{2} z \hat{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
* Derive the Frenet-Serret formula. Verify the same for the space curve $x=3 \cos t, y=3 \sin t, z=4 t$. (10)
* Derive $\nabla^{2}=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}$ in spherical coordinates and compute $\nabla^{2}\left(\frac{\mathrm{x}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{\frac{3}{2}}}\right)$ in spherical coordinates.
(15)

2018

If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $f(r)$ is differentiable, show that $\operatorname{div}[f(r) \vec{r}]=r f^{\prime}(r)+3 f(r)$. Hence or otherwise show that $\operatorname{div}\left(\frac{\vec{r}}{r^{3}}\right)=0$.

* Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force. Hence, find the scalar potential. Also find the work done in moving a particle of
unit mass in the force field from $(1,-2,1)$ to $(3,1,4)$.
(15)
* Let α be a unit-speed curve in \mathbf{R}^{3} with constant curvature and zero torsion. Show that α is (part of) a circle.
(10)
* For a curve lying on a sphere of radius a and such that the torsion is never 0 , show that $\left(\frac{1}{\kappa}\right)^{2}+\left(\frac{\kappa^{\prime}}{\kappa^{2} \tau}\right)^{2}=a^{2}$.

2017

* Prove that
$\nabla^{2} \mathrm{r}^{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}-2}$
and that $\mathrm{r}^{\mathrm{n}} \overrightarrow{\mathrm{r}}$ is irrotational, where.

$$
\begin{equation*}
\mathrm{r}=|\overrightarrow{\mathrm{r}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} . \tag{8}
\end{equation*}
$$

* Using Stokes' theorem, evaluate
$\oint_{C}[(x+y) d x+(2 x-z) d y+(y+z) d z]$,
where C is the boundary of the triangle with vertices
at $(2,0,0),(0,3,0)$ and $(0,0,6)$.
(15)
* Evaluate
$\iint_{S}(\nabla \times \vec{f}) \cdot \hat{n} \mathrm{dS}, \quad$ where S is the surface of the cone, $\mathrm{z}=2-\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$ above xy -plane and
$\overrightarrow{\mathrm{f}}=(\mathrm{x}-\mathrm{z}) \hat{\mathrm{i}}+\left(\mathrm{x}^{3}+\mathrm{yz}\right) \hat{\mathrm{j}}-3 \mathrm{xy}{ }^{2} \hat{\mathrm{k}}$.
* Find the curvature and torsion of the circular helix $\vec{r}=a(\cos \theta, \sin \theta, \theta \cot \beta)$,
β is the constant angle at which it cuts its generators.
(10)
* If the tangent to a curve makes a constant angle α, with a fixed line, then prove that $\mathrm{k} \cos \alpha \pm \tau \sin$ $\alpha=0$.
Conversely, if $\frac{k}{\tau}$ is constant, then show that the tangent makes a constant angle with a fixed direction.

2016

* If E be the solid bounded by the xy plane and the paraboloid $\mathrm{z}=4-\mathrm{x}^{2}-\mathrm{y}^{2}$, then evaluate $\iint_{\mathrm{S}} \overline{\mathrm{F}} . \mathrm{dS}$
where S is the surface bounding the volume E and $\overline{\mathrm{F}}=\left(\mathrm{zx} \sin y z+x^{3}\right) \hat{i}+\cos y z \hat{j}+\left(3 z y^{2}-e^{\lambda^{2}+y^{2}}\right) \hat{k}$.
* Evaluate $\iint_{S}(\nabla \times \bar{f})$.n̂dS for
$\bar{f}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$ where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ bounded by its projection on the xy plane.
* State Stokes' theorem. Verify the Stokes' theorem for the function $\bar{f}=x \hat{i}+z \hat{j}+2 y \hat{k}$, where c is the curve obtained by the intersection of the plane $\mathrm{z}=\mathrm{x}$ and the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ and S is the surface inside the intersected one.
* Prove that $\bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \times \bar{b}) \times \bar{c}$, if and only if either $\overline{\mathrm{b}}=\overline{0}$ or $\overline{\mathrm{c}}$ is collinear with $\overline{\mathrm{a}}$ or $\overline{\mathrm{b}}$ is perpendicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$

2015

Find the curvature and torsion of the curve $x=a \cos t, y=a \sin t, z=b t$.

* Examine if the vector field defined by $\vec{F}=2 x y z^{3}$
$\hat{i}+x^{2} z^{3} \hat{j}+3 x^{2} y z^{2} \hat{k}$ is irrotational. If so, find the scalar potential ϕ such that $\vec{F}=\operatorname{grad} \phi .(1)$
* Using divergence theorem, evaluate
$\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d y d x\right)$
where S is the surface of the sphere $x^{2}+y^{2}+$
$z^{2}=1$.
(15)
* If $\vec{F}=y \hat{i}+(x-2 x z) \hat{j}-x y \hat{k}$, evaluate
$\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the $x y$-plane.

2014

* For three vectors show that:

$$
\begin{equation*}
\bar{a} \times(\bar{b} \times \bar{c})+\bar{b} \times(\bar{c} \times \bar{a})+\bar{c} \times(\bar{a} \times \bar{b})=0 \tag{08}
\end{equation*}
$$

* For the vector $\bar{A}=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{x^{2}+y^{2}+z^{2}}$ examine if \bar{A} is an irrotational vector. Then determine ϕ such that $\bar{A}=\nabla \phi$.
* Evaluate $\iint_{S} \nabla \times \bar{A} \cdot \bar{n} d S$ for
$\bar{A}=\left(x^{2}+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x z+z^{2}\right) \hat{k}$ and S is the surface of hemisphere $x^{2}+y^{2}+z^{2}=16$ above $x y$ plane.
* Verify the divergence theorem for $\bar{A}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ over the region
$x^{2}+y^{2}=4, z=0, z=3$.

2013

* \vec{F} being a vector, prove that curl curl $\vec{F}=\operatorname{grad} \operatorname{div} \vec{F}-\nabla^{2} \vec{F}$
where $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$.
- Evaluate $\int_{S} \vec{F} \cdot d \vec{S}$,
where $\vec{F}=4 x \vec{i}-2 y^{2} \vec{j}+z^{2} \vec{k}$
and S is the surface bounding the region

$$
\begin{equation*}
x^{2}+y^{2}=4, z=0 \text { and } z=3 . \tag{13}
\end{equation*}
$$

* Verify the Divergence theorem for the vector function
$\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-x z\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$
taken over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

2012

* If $u=x+y+z, v+x^{2}+y^{2}+z^{2}, w=y z+z x+x y$, prove that grad u, grad v and grad w are coplanar.
(08)
* Find the value of $\iint_{s}(\vec{\nabla} \times \vec{F}) \cdot \overrightarrow{d s}$ taken over the upper portion of the surface $x^{2}+y^{2}-2 a x+a z=0$
and the bounding curve lies in the plane $\mathrm{z}=0$, when $\vec{F}=\left(y^{2}+z^{2}-x\right) \vec{i}+\left(z^{2}+x^{2}-y^{2}\right) \vec{j}$
$+\left(x^{2}+y^{2}-z^{2}\right) \vec{k}$.
(10)
* Find the value of the line integral over a circular path given by $x^{2}+y^{2}=a^{2}, z=0$ where the vector field, $\vec{F}=(\sin y) \vec{i}+x(1+\cos y) \vec{j}$.

2011

* Verify Green's theorem in the plane to $\oint_{C}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$.

Where C is the boundary of the region enclosed by the curves $y=\sqrt{x}$ and $y=x^{2}$.

The position vector \vec{r} of a particle of mass 2 units at any time t, referred to fixed origin and axes, is $\vec{r}=\left(t^{2}-2 t\right) \hat{i}+\left(\frac{1}{2} t^{2}+1\right) \hat{j}+\frac{1}{2} t^{2} \hat{k}$,

At time $t=1$, find its kinetic energy, angular momentum, time rate of change of angular momentum and the moment of the resultant force, acting at the particle, about the origin.
(10)

* Find the curvature, torsion and the relation between the arc length S and parameter u for the curve:
$r=r(u)=2 \log _{e} u \mathrm{i}+4 \mathrm{uj}+\left(2 \mathrm{u}^{2}+1\right) \mathrm{k}$
* Prove the vector identity:
$\operatorname{curl}(\vec{f} \times \vec{g})=\vec{f} \operatorname{div} \vec{g}-\vec{g} \operatorname{div} \vec{f}+(\vec{g} . \nabla) \vec{f}-(\vec{f} . \nabla) \vec{g}$ and verify it for the vectors $\overrightarrow{\mathrm{f}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{z} \hat{\mathrm{j}}+\mathrm{y} \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{g}}=\mathrm{y} \hat{\mathrm{i}}+\mathrm{z} \hat{\mathrm{k}}$.
* Evaluate the line integral
$\oint_{C}\left(\sin x d x+y^{2} d y-d z\right)$, where C is the circle
$x^{2}+y^{2}=16, z=3$, by using Stokes' theorem. (10)

2010

* Find the directional derivation of $\overrightarrow{V^{2}}$, Where, $\vec{V}=x y^{2} \vec{i}+z y^{2} \vec{j}+x z^{2} \vec{k}$ at the point $(2,0,3)$ in the
direction of the outward normal to the surface $x^{2}+y^{2}+z^{2}=14$ at the point $(3,2,1)$
$\%$
(1) Show that $\vec{F}=\left(2 x y+z^{2}\right) \vec{i}+x^{2} \vec{j}+3 z^{2} x \vec{k}$ is a conservative field. Find its scalar potnetial and also the work done in moving a particle from $(1,-2,1)$ to $(3,1,4)$.
(2) Show that, $\nabla^{2} f(r)=\left(\frac{2}{r}\right) f^{\prime}(r)+f^{\prime \prime}(r)$, Where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
* Use divergence theorem to evaluate, $\iint\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d y d x\right)$, Where S is the sphere $x^{2}+y^{2}+z^{2}=1$.
\& If $\vec{A}=2 y \vec{i}-z \vec{j}-x^{2} \vec{k}$ and S is the surface of the parabolic cylinder $y^{2}=8 x$ in the first octant bounded by the planes $y=4, z=6$,evaluate the surface integral, $\iint \vec{A} \cdot \hat{n} \overrightarrow{d S}$.
* Use Green's theorem in a plane to evaluate the integral, $\int_{C}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where C is the boundary of the surface in the xy - plane enclosed by, $y=0$ and the semi-circle, $y=\sqrt{1-x^{2}}$.

2009

* Verify Green's theorem in the plane for $\oint_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d x\right]$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
* Show that $\bar{A}=\left(6 x y+z^{3}\right) \hat{i}+\left(3 x^{2}-z\right) \hat{j}+\left(3 x z^{2}-y\right) \hat{k}$ is irrotational. Find a scalar function ϕ such that $\bar{A}=\operatorname{grad} \phi$.
* Let $\psi(x, y, z)$ be a scalar function. Find grad ψ and $\nabla^{2} \psi$ in spherical coordinates.
* Verify stokes theorem for
$\bar{A}=(y-z+2) \hat{i}+(y z+4) \hat{j}-x z \hat{k}$
Where S is the surface of the cube $x=0, y=0$ $z=0, x=2, y=2, z=2$ above the xy-plane.
* Show that, if $\bar{r}=x(s) \hat{i}+y(s) \hat{j}+z(s) \hat{k}$ is a space curve, $\frac{d \bar{r}}{d s} \cdot \frac{d^{2} \bar{r}}{d s^{2}} \times \frac{d^{3} \bar{r}}{d s^{3}}=\frac{\tau}{\rho^{2}}$, where τ is the torsion and ρ the radius of curvature

2008

- Show that $\oint_{s} \frac{d s}{\sqrt{a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}}}=\frac{4 \pi}{\sqrt{a b c}}$,

Where S is the surface of the ellipsoid $a x^{2}+b y^{2}+c z^{2}=1$

* Find the unit vector along the normal to the surface $z=x^{2}+y^{2}$ at the point $(-1,-2,5)$.
* Prove that the necessary and sufficient condition for the vector function \vec{V} of the scalar variable t to have constant magnitude is $\vec{V} \frac{d \vec{v}}{d t}=0$.

If $\vec{F}=2 x^{2} \hat{i}-4 y z \hat{j}+z x \hat{k}$, , evaluate $\iint_{S} \vec{F} \cdot \vec{n} d s$ Where S is the surface of the cube boundded by the planes $x=0, x=1, y=0, y=1, z=0, z=1$.

2007

* Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ Where
$\vec{F}=C\left[-3 a \sin ^{2} \theta \cos \theta \vec{i}+a\left(2 \sin \theta-3 \sin ^{2} \theta\right) \vec{j}+b \sin 2 \theta \vec{k}\right]$
and the curve C is given by $\vec{r}=a \cos \theta \vec{i}+a \sin \theta \vec{j}+b \theta \vec{k} \quad \theta$ varying from $\pi / 4$ to $\pi / 2$.
* Show that curl $\left(\frac{\vec{a} \times \vec{r}}{r^{3}}\right)=-\frac{\vec{a}}{r^{3}}+\frac{3 \vec{r}}{r^{3}}(\vec{a} \cdot \vec{r})$ Where \vec{a} is a constant vector and $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$
* Find the curvature and torsion at any point of the I curve $x=a \cos 2 t, y=a \sin 2 t, z=2 a \sin t$.
* Evaluatethesurface integral $\int_{S}(y z \vec{i}+z x \vec{j}+x y \vec{k}) d \vec{a}$, Where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$ in the first otant.
(10)
* Apply stokes theorem to Prove that | $\int_{c}(y d x+z d y+x d z)=-2 \sqrt{2} \pi a^{2}$,

Where C is the curve given by

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-2 a x-2 a y=0, x+y=2 a . \tag{10}
\end{equation*}
$$

2006

* If $\vec{f}=3 x y \hat{i}-y^{2} \hat{j}$, determine the value of $\int_{C} \vec{f} . d r$, Where C is the curve $\mathrm{y}=2 x^{2}$ in the xy -plane from $(0,0)$ to $(1,2)$.
* If $u \vec{f}=\vec{\nabla} V$ Where u, v are scalar fields and \vec{f} is a vector field, find the value of \vec{f}. curl \vec{f}.
* If O be the origin, A, B two fixed points and $P(x$, $y, z)$ a variables point, show that $\operatorname{curl}(\overrightarrow{P A} \times \overrightarrow{P B})=2(\overrightarrow{A B})$.
* Using stokes theorem, determine the value of the integral $\int_{\Gamma}(y d x+z d y+x d z)$, Where Γ is the curve defined by $x^{2}+y^{2}+z^{2}=a^{2}, x+z=a$ (10)
* Prove that the cylinderical coordinate system is orthogonal
(10)

2005

* For the curve $\vec{r}=a\left(3 t-t^{3}\right) \vec{i}+3 a t^{2} \vec{j}+a\left(3 t+t^{3}\right) \vec{k}$, a being a constant. Show that the redius of curvature is equal to its radius of torsion
* Find $f(r)$ if $f(r) \vec{r}$ is both solenoidal and irrotational.
* Evaluate $\iint_{S} \vec{F} \cdot d \vec{s}$ Where $\vec{F}=y z \vec{i}+z x \vec{j}+x y \vec{k}$ and ' S ' is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ that lies in the first octant.
* Verify the divergence theorem for $\vec{F}=4 x \vec{i}-2 y^{2} \vec{j}+z^{2} \vec{k}$ taken over the region bounded by $x^{2}+y^{2}=4, z=0$ and $z=3$.
* By using vector methods, find an equation for the tangent plane to the surface $z=x^{2}+y^{2}$ at the point (1, - 1, 2).

2004

* Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ for the field $\vec{F}=\operatorname{grad}\left(x y^{2} z^{3}\right)$

Where C is the ellipse in which the plane $z=2 x+$ $3 y$ cuts the cylinder $x^{2}+y^{2}=12$ counter clockwise as viewed from the positive end of the z-axis looking towards the origin.
(10)

* Show that $\operatorname{div}(\vec{A} \times \vec{B})=\vec{B}$ curl $\vec{A}-\vec{A}$.curl \vec{B}
- Evaluate Curl $\left[\frac{(2 \vec{i}-\vec{j}+3 \vec{k}) \times \vec{r}}{r^{n}}\right]$

Where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r^{2}=x^{2}+y^{2}+z^{2}$.

* Evaluate $\iint_{S}(x \vec{i}+y \vec{j}+z \vec{k}) \vec{n} d s$. Where S is the
surface $x+y+z=1$ lying in the first octant. (10) Expess $\nabla^{2} u$ in spherical polar coordinates. (10)

2003

* Find the expression for curvature and torsion at a point on the curve
$x=a \cos \theta, y=a \sin \theta, z=a \theta \cot \beta$.

If $\overrightarrow{\mathrm{r}}$ is the position vector of the point (x, y, z) with respect to the origin, prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$. Find $f(r)$ such that
$\nabla^{2} f(r)=0$

If \vec{F} is solenoidal, Prove that
curl curl curl curl $\vec{F}=\nabla^{4} \vec{F}$

* Verify stoke's Theorem when
$\vec{F}=\left(2 x y-x^{2}\right) \vec{i}-\left(x^{2}-y^{2}\right) \vec{d} \& C$
is the boundary of the region closed by the parabolas $y^{2}=x$ and $x^{2}=y$.
(10)
* Express $\nabla \times \vec{F}$ and $\nabla^{2} \phi$ in cylinderical coordinates.
(10)

2002

* Find the curvature and torsion of the curve, $x=\frac{2 t+1}{t-1}, y=\frac{t^{2}}{t-1}, z=t+2$. Interpret your answer.
* State stoke's theorem and then verify if for . $\vec{A}=\left(x^{2}+1\right) \vec{i}+x y \hat{j}$ integrated round the square in the plane $z=0$ whose sides are along the lines. $x=0, y=0, x=1, y=1$.
(10)
* Prove that
(i) $\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \times \nabla) \vec{A}-\vec{B}(\vec{\nabla} \times \vec{A})-(\vec{A} \times \vec{\nabla}) \vec{B}$
(ii) curl $\frac{\vec{a} \times \vec{r}}{r^{3}}=-\frac{\vec{a}}{r^{3}}+\frac{3 \vec{r}}{r^{3}}(\vec{a} \cdot \vec{r})$,
$\vec{a}=$ cons $\tan t$ vector.
* Show that if $A \neq \overrightarrow{0}$ and both of the conditions $\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{C}$ and $\vec{A} \times \vec{B}=\vec{A} \times \vec{C}$ hold simultaneously then $\vec{B}=\vec{C}$ but if only one of these conditions holds then $\vec{B} \neq \vec{C}$ necessarily.
* Prove the following
(i) If u_{1}, u_{2}, u_{3} are general coordinates, then
$\frac{\partial \vec{r}}{\partial u_{1}} \times \frac{\partial \vec{r}}{\partial u_{2}} \times \frac{\partial \vec{r}}{\partial u_{3}}$ and $\vec{\nabla} u_{1}, \vec{\nabla} u_{2}, \vec{\nabla} u_{3}$ are reciprocal system of vectors.
(ii) $\left(\frac{\partial \vec{r}}{u_{1}} \cdot \frac{\partial \vec{r}}{u_{2}} \times \frac{\partial \vec{r}}{u_{3}}\right)\left(\vec{\nabla} u_{1} \cdot \vec{\nabla} u_{2} \times \vec{\nabla} u_{3}\right)=1$

2001

* Find an equation for the plane passing through the points $P_{1}(3,1,-2), P_{2}(-1,2,4), P_{3}(2,-1,1)$ by using vector method.
- Prove that $\nabla \times(\nabla \times \bar{A})=-\nabla^{2} \bar{A}+\nabla(\nabla \cdot \bar{A})$
* If $\nabla \cdot \bar{E}, \nabla \cdot \bar{H}, \nabla \times \bar{E}=\frac{\partial \bar{H}}{\partial t}, \nabla \times \bar{H}=\frac{\partial \bar{E}}{\partial t}$ Show that
$\bar{E} \& \bar{H}$ satisfy $\nabla^{2} u=-\frac{\partial^{2} \bar{u}}{\partial t^{2}}$
* Given the space Curve $x=t, y=t^{2}, z=\frac{2}{3} t^{3}$.

Find (1) the curvature $\rho(2)$ the torsion τ.

* If $F=\left(y^{2}+z^{2}-x^{2}\right) i+\left(z^{2}+x^{2}-y^{2}\right) j+\left(x^{2}+y^{2}-z^{2}\right) k$, evaluate $\iint \operatorname{curl} \bar{F} \cdot \hat{n} d s$, taken over the portion of the surface $x^{2}+y^{2}+z^{2}-2 a x+a z=0$ above the plane $\mathrm{z}=0$ and verify stokes theorem.

2000

* Prove the identities:
(1) Curl grad $\phi=0$, (2) $\operatorname{div} \operatorname{curl} f=0$

If $\overrightarrow{O A}=a i, \overrightarrow{O B}=a j, \overrightarrow{O C}=a k$ form three
coterminous edges of a cube and s denotes the surface of the cube, evaluate $\int_{s}\left\{\left(x^{3}-y z\right) i-2 x^{2} y j+2 k\right\} . n d s$ by expressing it as volume integral, Where n is the unit outward normal to $d s$.

