IAS
 PREVIOUS YEARS QUESTIONS (2020-1983) SEGMENT-WISE

COMPLEX ANALYSIS

2020
 * Evaluate the integral $\int_{C}\left(z^{2}+3 z\right) d z$

 counterclockwise from $(2,0)$ to $(0,2)$ along the curve C, where C is the circle $|z|=2$.[10]

* Using contour integration, evaluate the integral
$\int_{0}^{2 \pi} \frac{1}{3+2 \sin \theta} d \theta$.
* If $v(r, \theta)=\left(r-\frac{1}{r}\right) \sin \theta, r \neq 0$, then find an analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{r}, \theta)+\mathrm{iv}(\mathrm{r}, \theta)$
[15]

2019

* Suppose $f(z)$ is analytic function on a domain D in $\not \subset$ and satisfies the equation $\operatorname{Im} f(z)=(\operatorname{Re} f(z))^{2}, Z \in D$. Show that $f(z)$ is constant in D.
[10]
* Show that an isolated singular point z_{0} of a function $f(z)$ is a pole of order m if and only if $f(z)$ can be written in the form $f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}$ where $\phi(z)$ is analytic and non-zero at z_{0}.
Moreover $\operatorname{Res}_{\mathrm{z}=\mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\frac{\dot{\phi}^{(\mathrm{m}-1)}\left(\mathrm{z}_{0}\right)}{(\mathrm{m}-1)!}$ if $\mathrm{m} \geq 1$.[15]
* Evaluate the integral $\int_{C} \operatorname{Re}\left(z^{2}\right)$ dz from 0 to $2+4 i$ along the curve C where C is a parabola $\mathrm{y}=\mathrm{x}^{2}$.
* Obtain the first three terms of Laurent series expansion of the function $f(z)=\frac{1}{\left(e^{z}-1\right)}$ about the point $\mathrm{z}=0$ valid int he region $0<|\mathrm{z}|<2 \pi$.
[10]

2018

1. Prove that the function: $u(x, y)=(x-1)^{3}-3 x y^{2}+3 y^{2}$ is harmonic and find its harmonic conjugate and the
corresponding analytic function $f(z)$ in terms of z.
(10)
2. Show by applying the residue theorem that
$\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}=\frac{\pi}{4 a^{3}}, a>0$.
3. Find the Laurent's series which represent the function $\frac{1}{\left(1+z^{2}\right)(z+2)}$ when
(i) $|z|<1$
(ii) $1<|z|<2$
(iii) $|z|>2$
(15)

2017

* Using contour integral method, prove that
$\int_{0}^{\infty} \frac{x \sin m x}{a^{2}+x^{2}} d x=\frac{\pi}{2} e^{-m a}$
*. For a function $\mathrm{f}: \mathbb{C} \rightarrow \mathbb{C}$ and $\mathrm{n} \geq 1$, let $\mathrm{f}^{(\mathrm{n})}$ denote the $\mathrm{n}^{\text {th }}$ derivative of f and $\mathrm{f}^{(0)}=\mathrm{f}$. Let f be an entire function such that for some $n \geq 1, f^{(n)}\left(\frac{1}{k}\right)=0$ for all $\mathrm{k}=1,2,3, \ldots \ldots$. Show that f is a polynomial.
* Let $\mathrm{f}=\mathrm{u}+\mathrm{iv}$ be an analytic function on the unit disc $D=\{z \in \mathbb{C}:|z|<1\}$. Show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}$ at all points of D .
* Determine all entire functions $\mathrm{f}(\mathrm{z})$ such that 0 is a removable singularity of $f\left(\frac{1}{z}\right)$.

2016

* Is $v(x, y)=x^{3}-3 x y^{2}+2 y$ a harmonic function? Prove your claim. If yes, find its conjugate harmonic function $u(x, y)$ and hence obtain the analytic function whose real and imaginary parts are u and v respectively.
* Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be the curve
$\gamma(\mathrm{t})=\mathrm{e}^{2 \pi \mathrm{it}}, 0 \leq \mathrm{t} \leq 1$.

Find, giving justifications, the value of the contour integral
$\int_{\gamma} \frac{d z}{4 z^{2}-1}$

* Prove that every power series represents an analytic function inside its circle of convergence.

2015

* Show that the function $v(x, y)=\ln \left(x^{2}+y^{2}\right)+x+y$ is harmonic. Find its conjugate harmonic function $u(x, y)$. Also find the corresponding analytic function $f(z)=u+i v$ in terms of z.
* Find all possible Taylor's and Laurent's series expansions of the function $f(z)=\frac{2 z-3}{z^{2}-3 z+2}$ about the point $z=0$.
* State Cauchy's residue theorem. Using it, evaluate the integral $\int_{C} \frac{e^{z}+1}{z(z+1)(z \square i)^{2}} d z ; C:|z|=2$.

2014

* Prove that the function $f(\mathrm{z})=u+i v$, where $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, z \neq 0 ; f(0)=0$ satisfies Cauchy-Riemann equations at the origin, but the derivative of f at $z=0$ does not exist.
* Expand in Laurent series the function $f(z)=\frac{1}{z^{2}(z-1)}$ about $\mathrm{z}=0$ and $\mathrm{z}=1$.
* Evaluate the integral $\int_{0}^{\pi} \frac{d \theta}{\left(1+\frac{1}{2} \cos ,\right)^{2}}$ using residues.

2013

* Prove that if $b e^{a+1}<1$ where a and b are positive and real, then the function $\mathrm{z}^{\mathrm{n}} \mathrm{e}^{-\mathrm{a}}-\mathrm{b} \mathrm{e}^{\mathrm{z}}$ has n zeroes in the unit circle.
* Using Cauchy's residue theorem, evaluate the integral
$I=\int_{0}^{\pi} \sin ^{4} \theta d \theta$

2012

* Show that the function defined by
$f(z)=\left\{\begin{array}{cc}\frac{x^{3} y^{5}(x+i y)}{x^{6}+y^{10}}, & z \neq 0 \\ 0, & z=0\end{array}\right.$
is not analytic at the origin though it satisfies Cauchy-Riemann equations at the origin.
(12)
* Use Cauchy integral formula to evaluate $\int_{C} \frac{e^{3 z}}{(z+1)^{4}} d z$, where C is the circle $|z|=2$.
* Expand the function $f(z)=\frac{1}{(z+1)(z+3)}$ in

Laurent series valid for
(i) $1<|z|<3$
(ii) $|z|>3$
(iii) $0<|z+1|<2$
(iv) $|z|<1$

* Evaluate by Contour integration

$$
\begin{equation*}
I=\int_{0}^{2 \pi} \frac{d \theta}{1-2 a \cos \theta+a^{2}}, a^{2}<1 \tag{15}
\end{equation*}
$$

2011

Evaluate by Contour integration, $\int_{0}^{1} \frac{d x}{\left(x^{2}-x^{3}\right)^{1 / 3}}$.

* Find the Laurent Series for the function
$f(z)=\frac{1}{1-z^{2}}$ with centre $\mathrm{z}=1$.
Show that the series for which the sum of first n terms $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}, 0 \leq x \leq 1$ cannot be differentiated term-by-term at $x=0$. What happens at $\mathrm{x} \neq 0$?
(15)
* If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is an analytic function of $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $u-v=\frac{e^{y}-\cos x+\sin x}{\cos h y-\cos x}$,find $\mathrm{f}(\mathrm{z})$ subject to the condition, $f\left(\frac{\pi}{2}\right)=\frac{3-i}{2}$.

2010

* Show that $u(x, y)=2 x-x^{3}+3 x y^{2}$ is a harmonic function. Find a harmonic conjugate of $u(x, y)$. Hence find the analytic function f for which $u(x, y)$ is the real part.
* (i) Evaluate the line integral $\int_{C} f(z) d z$. Where $\mathrm{f}(\mathrm{z})=\mathrm{z}^{2}, \mathrm{c}$ is the boundary of the triangle with vertices $\mathrm{A}(0,0), \mathrm{B}(1,0), \mathrm{C}(1,2)$ in that order.
(ii) Find the image of the finite vertical strip R : $x=5$ to $x=9,-\pi \leq y \leq \pi$ of $z-$ plane under the exponential function.
(15)
* Find the Laurent series of the function
$f(z)=\exp \left[\frac{\lambda}{2}\left(z-\frac{1}{z}\right)\right]$ as $\sum_{n=-\infty}^{\infty} c_{n} z^{n}$
for $0<|z|<\infty$
Where $C_{n}=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \phi-\lambda \sin \phi) d \phi, n=0, \pm 1, \pm 2, \ldots$, with λ a given complex number and taking the unit circle C given by $z=e^{i \phi}(-\pi \leq \phi \leq \pi)$ as contour in this region.

2009

* Let $f(z)=\frac{a_{0}+a_{1} z+\ldots \ldots .+a_{n-1} z^{n-1}}{b_{0}+b_{1} z+\ldots \ldots .+b_{n} z^{n}}, b_{n} \neq 0$,

Assume that the zeroes of the denominator are simple. Show that the sum of the residues of $f(z)$ at its poles is equal to $\frac{a_{n-1}}{b_{n}}$.

* If α, β, γ are real numbers such that $\alpha^{2}>\beta^{2}+\gamma^{2}$ Show that:
$\int_{0}^{2 \pi} \frac{d \theta}{\alpha+\beta \cos \theta+\gamma \sin \theta}=\frac{2 \pi}{\sqrt{\alpha^{2}-\beta^{2}-\gamma^{2}}}$

2008

* Find the residue of $\frac{\cot z \cot h z}{z^{3}}$ at $\mathrm{z}=0$.
* Evaluate
$\int_{C}\left[\frac{e^{2 z}}{z^{2}\left(z^{2}+2 z+2\right)}+\log (z-6)+\frac{1}{(z-4)^{2}}\right] d z$
where c is the circle $|\mathrm{Z}|=3$. State the theorem you use in evaluating above integral.
(15)
* Let $\mathrm{f}(\mathrm{z})$ be entire function satisfying $f(z) \leq k|z|^{2}$
for some + ve constant k and all z. show that $f(z)=a z^{2}$ for some constant a.

2007

* Prove that the function f defined by
$f(z)=\left\{\begin{array}{l}\frac{z^{5}}{|z|^{4}}, z \neq 0 \\ 0, z=0\end{array}\right.$ is not differentiable at $\mathrm{z}=0$
* Evaluate (by using residue theorem)
$\int_{0}^{2 \pi} \frac{d \theta}{1+8 \cos ^{2} \theta}$.

2006

* With the aid of residues, evaluate

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\cos 2 \theta d \theta}{1-2 a \cos \theta+a^{2}} ;-1<a<1 \tag{15}
\end{equation*}
$$

* If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is an analytic function of the complex variable z and $u-v=e^{x}(\cos y-\sin y)$ determine $f(z)$ in terms of z.
* Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in Laurent's series which is valid for (i) $1<|z|<3$ (ii) $|z|>3$ (iii) $|\mathrm{z}|<1$.

2004

* If all zeros of a polynomial $p(z)$ lie in a half plane then show that zeros of the derivative $p^{\prime}(z)$ also lie in the same half plane.
* Using contour integration, evaluate
$\int_{0}^{2 \pi} \frac{\cos ^{2} 3 \theta d \theta}{1-2 p \cos 2 \theta+p^{2}}, 0<p<1$.

2003

* Use the method of contour integration to prove that $\int_{0}^{\pi} \frac{a d \theta}{a^{2}+\sin ^{2} \theta}=\frac{\pi}{\sqrt{1+a^{2}}} ;(a>0)$.

2002

* Suppose that f and g are two analytic functions on the set \mathbb{C} of all complex numbers with $f\left(\frac{1}{n}\right)=g\left(\frac{1}{n}\right)$ for $\mathrm{n}=1,2,3, \ldots \ldots$ then show that $\mathrm{f}(\mathrm{z})=\mathrm{g}(\mathrm{z})$ for each z in \mathbb{C}.
* Show that when $0<|z-1|<2$, the function $f(z)=\frac{z}{(z-1)(z-3)}$ has the Laurent series expansion in powers of $\mathrm{z}-1$ as
$-\frac{1}{2(z-1)}-3 \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+2}}$.

2001

* Prove that the Riemann Zeta function ζ defined by $\xi(z)=\sum_{n=1}^{\infty} n^{-z} \quad$ converges for $\operatorname{Re} z>1$ and converges uniformly for $\operatorname{Re} z \geq 1+\in$ where $\in>0$ is arbitrary small.
* Show that $\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x=\frac{\pi}{\sqrt{2}}$.

2000

* Suppose $f(\xi)$ is continuous on a circle C. show that $\int_{C} \frac{f(\xi)}{(\xi-z)} d \xi$ as z varies inside of ' C ', is differentiable under the integral sign. Find the derivative hence or otherwise derive an integral representation for $f^{\prime}(z)$ if $f(z)$ is analytic on and inside of C .
(30)

1999

* Examine the nature of the function $f(z)=\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}}, z \neq 0 \quad f(0)=0$ in a region including the origin and hence show that Cauchy - Riemann equations are satisfied at the origin but $\mathrm{f}(\mathrm{z})$ is not analytic there.
* For the function $f(z)=\frac{-1}{z^{2}-3 z+2}$, find Laurent series for the domain (i) $1<|z|<2 \quad$ (ii) $|z|>2$ show further that $\oint_{c} f(z) d z=0$ where ' c ' is any closed contour enclosing the points $\mathrm{z}=1$ and $\mathrm{z}=2$.
* Using residue theorem show that $\int_{-\infty}^{\infty} \frac{x \sin a x}{x^{4}+4} d x=\frac{\pi}{2} e^{-a} \sin a ;(a>0) \quad(1984,1998)$
* The function $f(z)$ has a double pole at $z=0$ with residue 2 , a simple pole at $\mathrm{z}=1$ with residue 2 , is
analytic at all other finite points of the plane and is bounded as $|z| \rightarrow \infty$. If $\mathrm{f}(2)=5$ and $\mathrm{f}(-1)=2$, find $\mathrm{f}(\mathrm{z})$.
* What kind of singularities the following functions have?
(i) $\frac{1}{1-e^{z}}$ at $z=2 \pi i$
(ii) $\frac{1}{\sin z-\cos z}$ at $z=\frac{\pi}{4}$
(iii) $\frac{\cot \pi z}{(z-a)^{2}}$ at $z=a$ and $z=\infty$.

In case (iii) above what happens when ' a ' is an integer.(including $\mathrm{a}=0$)?

1998

* Show that the function
$f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, z \neq 0$
- $\quad f(0)=0$ is continuous and C-R conditions are satisfied at $\mathrm{z}=0$, but $f^{\prime}(z)$ does not exist at $\mathrm{z}=0$.
* Find the Laurent expansion of $\frac{z}{(z+1)(z+2)}$ about the singularity $z=-2$. Specify the region of convergence and the nature of singularity at $\mathrm{z}=-2$ By using the integral representation of $f^{n}(0)$, prove that $\left(\frac{x^{n}}{n!}\right)^{2}=\frac{1}{2 \pi i} \oint_{c} \frac{x^{n} e^{x z}}{n!z^{n+1}} d z$, where ' c ' is any closed contour surrounding the origin. Hence show that $\sum_{n=0}^{\infty}\left(\frac{x^{n}}{n!}\right)^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2 x \cos \theta} d \theta$.
- Using residue theorem $\int_{0}^{2 \pi} \frac{d \theta}{3-2 \cos \theta+\sin \theta}$.

1997

If $f(z)=\frac{A_{1}}{z-a}+\frac{A_{2}}{(z-a)^{2}}+----+\frac{A_{n}}{(z-a)^{n}}$
find the residue at a for $\frac{f(z)}{z-b}$ where
$A_{1}, A_{2}, \ldots \ldots A_{n}, \quad \mathrm{a} \& \mathrm{~b}$ are constant. What is the residue at infinity.

* Find the Laurent series for the function $e^{1 / 2}$ in $0<|z| \leq \infty$.

Deduce that $\frac{1}{\pi} \int_{0}^{\pi} e^{\cos \theta} \cos (\sin \theta-n \theta) d \theta=\frac{1}{n!}$
($n=0,1,2, \ldots \ldots \ldots .$.
(2001)

* Find the function $f(z)$ analytic with in the unit circle which takes the values $\frac{a-\cos \theta+i \sin \theta}{a^{2}-2 a \cos \theta+1}, 0 \leq \theta \leq 2 \pi$ on the circle.
* Integrating $e^{-z^{2}}$ along a suitable rectangular contour. Show that $\int_{0}^{\infty} e^{-x^{2}} \cos b x d x=\frac{\sqrt{\pi}}{2} e^{-b^{2}}$.

1996

* Evaluate $\underset{z \rightarrow 0}{ } t \frac{1-\cos z}{\sin \left(z^{2}\right)}$
* Show that $\mathrm{z}=0$ is not a branch point for the function $f(z)=\frac{\sin \sqrt{z}}{\sqrt{z}}$. Is it a removable singularity?
* Prove that every polynomial equation $a_{0}+a_{1} z+a_{2} z^{2}+\ldots \ldots \ldots+a_{n} z^{n}=0, a_{n} \neq 0, n \geq 1$ has exactly ' n ' roots.
* By using residue theorem, evaluate $\int_{0}^{\infty} \frac{\log _{e}\left(x^{2}+1\right)}{x^{2}+1} d x$
* About the singularity $z=-2$, find the Laurent expansion of $(z-3) \sin \frac{1}{z+2}$. Specify the region of convergence and nature of singularity at $z=-2$.

1995

* Let $u(x, y)=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$. Prove that ' u ' is a harmonic function. Find a harmonic function v such that $\mathrm{u}+\mathrm{iv}$ is an analytic function of z .
* Find the Taylor series expansion of the function $f(z)=\frac{z}{z^{4}+9}$ around $z=0$. Find also the radius of convergence of the obtained series.
* Let 'C' be the circle $|\mathrm{Z}|=2$ described contour clockwise .Evaluate the integral $\int_{c} \frac{\cosh \pi z}{z\left(z^{2}+1\right)} d z$
* Let $a \geq 0$. Evaluate the integral $\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x$ with the aid of residues.
(2006)
* Let f be analytic in the entire complex plane. Suppose that there exists a constant $\mathrm{A}>0$ such that $|f(z)| \leq \mathrm{A}|\mathrm{z}|$ for all z. Prove that there exists a complex number ' a ' such that $\mathrm{f}(\mathrm{z})=\mathrm{az}$ for all z.
* Suppose a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges at a point $z_{0} \neq 0$.

Let z_{1} be such that $\left|z_{1}\right|<\left|z_{0}\right|$ and $z_{1} \neq 0$
$\left|z_{1}\right|<\left|z_{0}\right|$ and $z_{1} \neq 0$ show that the series converges uniformly in the disc $\left\{z:|z| \leq\left|z_{1}\right|\right\}$.

1994

* How many zeros does the polynomial $p(z)=z^{4}+2 z^{3}+3 z+4$. Posses in (i) the first quadrant (ii) the fourth quadrant.
* Test for uniform convergence in the region $|\mathrm{Z}| \leq 1$ the series $\sum_{n=1}^{\infty} \frac{\cos n z}{n^{3}}$.
* Find Laurent series for (i) $\frac{e^{2 z}}{(z-1)^{3}}$ about $\mathrm{z}=1$. (ii) $\frac{1}{z^{2}(z-3)^{2}}$ about $\mathrm{z}=3$.
* Find the residues of $f(z)=e^{z} \operatorname{cosec}^{2} z$ at all its poles in the finite plane.
* By means of contour integration, evaluate $\int_{0}^{\infty} \frac{\left(\log _{e} u\right)^{2}}{u^{2}+1} d u$.

1993

* In the finite Z - plane show that the function $f(z)=\sec \frac{1}{z}$.
has infinitely many isolated singularities in a finite interval which includes ' 0 '.
* Prove that (by applying Cauchy integral formula or otherwise)
$\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} 2 \pi$,
where $n=1,2,3, \ldots$
* If C is the curve $y=x^{3}-3 x^{2}+4 x-1$ joining the points $(1,1)$ and $(2,3)$ find the value of $\int_{C}\left(12 z^{2}-4 i z\right) d z$
* Prove that $\sum_{n=1}^{\infty} \frac{z^{n}}{n(n+1)}$ converges absolutely for $|\mathrm{z}| \leq 1$.
* Evaluate $\int_{0}^{\infty} \frac{d x}{x^{6}+1}$ by choosing an appropriate contour.

1992

* If $u=e^{-x}$ (x siny- ycosy), find ' v ' such that $\mathrm{f}(\mathrm{z})=$ $\mathrm{u}+\mathrm{iv}$ is analytic. Also find $\mathrm{f}(\mathrm{z})$ explicitly as a function of z.
(1997)
* Let $f(z)$ be analytic inside and on the circle C defined by $|z|=\mathrm{R}$ and let $z=r e^{i \theta}$ be any point inside C. prove that

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(R^{2}-r^{2}\right) f\left(\mathrm{Re}^{i \phi}\right)}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} d \phi
$$

* Prove that all roots of $z^{7}-5 z^{3}+12=0$ lies between the circles $|z|=1$ and $|z|=2$.
(1998,2006)
* Find the region of convergence of the series whose n-th term is $\frac{(-1)^{n-1} z^{2 n-1}}{(2 n-1)!}$
* Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in Laurent series valid for

$$
(i)|z|>3 \quad(i i) 1<|z|<3 \quad(i i i)|z|<1
$$

(2005)

* By integrating along a suitable contour evaluate $\int_{0}^{\infty} \frac{\cos m x}{x^{2}+1} d x$.

1991

* A function $\mathrm{f}(\mathrm{z})$ is defined for finite values of z by $\mathrm{f}(0)=0$ and $f(z)=e^{-z^{-4}}$ everywhere else. Show that the Cauchy Riemann equation are satisfied at the origin. Show also that $f(z)$ is not analytic at the origin.
* If $|\mathrm{a}| \neq \mathrm{R}$ show that $\int_{|z|=R} \frac{|d z|}{|z-a||z+a|}<\frac{2 \pi R}{\left|R^{2}-|a|^{2}\right|}$
* If $J_{n}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (n \theta-t \sin \theta) d \theta$. show that
$e^{\frac{1}{2}\left(z-\frac{1}{z}\right)}=J_{0}(t)+z J_{1}(t)+z^{2} J_{2}(t)+---$
$-\frac{1}{z} J_{1}(t)+\frac{1}{z^{2}} J_{2}(t)-\frac{1}{z^{3}} J_{3}(t)+---$
* Examine the nature of the singularity of e^{z} at infinity
* Evaluate the residues of the function $\frac{Z^{3}}{(Z-2)(Z-3)(Z-5)}$ at all singularities and show that their sum is zero.
* By integrating along a suitable contour show that $\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}}=\frac{\pi}{\sin a \pi}$ where $0<\mathrm{a}<1$.

1990

Let f be regular for $|\mathrm{Z}|<\mathrm{R}$, prove that, if $0<\mathrm{r}<\mathrm{R}$, $f^{\prime}(0)=\frac{1}{\pi r} \int_{0}^{2 \pi} u(\theta) e^{-i \theta} d \theta$;
where $u(\theta)=\operatorname{Re} f\left(r e^{i \theta}\right)$
Prove that the distance from the origin to the nearest zero of $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is at least $\frac{r\left|a_{0}\right|}{M+\left|a_{0}\right|}$. where r is any number not exceeding the radius of the convergence of the series and

$$
M=M(r)=\sup |f(z)| .
$$

* Prove that $\int_{-\infty}^{\infty} \frac{x^{4}}{1+x^{8}} d x=\frac{\pi}{\sqrt{2}} \sin \frac{\pi}{8}$ using residue calculus.
* Prove that if $\mathrm{f}=\mathrm{u}+\mathrm{iv}$ is regular through out the complex plane and $\mathrm{au}+\mathrm{bv}-\mathrm{c} \geq 0$ for suitable constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ then f is constant.
* Derive a series expansion of $\log \left(1+e^{z}\right)$ in powers of z .
* Determine the nature of singular points $\sin \left(\frac{1}{\cos 1 / 2}\right)$ and investigate its behaviour at $z=\infty$.

1989

* Find the singularities of $\sin \left(\frac{1}{1-z}\right)$ in the complex plane.

1988

* By evaluating $\int \frac{d z}{z+2}$ over a suitable contour C , Prove that $\int_{0}^{\pi} \frac{1+2 \cos \theta}{5+4 \cos \theta} d \theta$
* If f is analytic in $|Z| \leq R$ and x, y lie inside the disc, evaluate the integral $\int_{|z| R} \frac{f(z) d z}{(z-x)(z-y)}$ and deduce that a function analytic and bounded for all finite z is a constant.
* If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad$ has radius of convergence R and prove that $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}$
* Evaluate $\int_{C} \frac{Z e^{z}}{(z-a)^{3}}$, if a lies inside the closed contour C.
* Prove that $\int_{0}^{\infty} e^{-x^{2}} \cos (2 b x) d x=\frac{\sqrt{\pi}}{2} e^{-b^{2}} ;(b>0)$ by the integrating $e^{-Z^{2}}$ along the boundary of the rectangle $|x| d " R, 0 d " y d " b$.
(1997)
* Prove that the coefficients C_{n} of the expansion $\frac{1}{1-z-z^{2}}=\sum_{n=0}^{\infty} C_{n} z^{n}$ satisfy $C_{n}=C_{n-1}+C_{n-2}, n \geq 2$ Determine C_{n}.

1987

* By considering the Laurent series for $f(z)=\frac{1}{(1-z)(z-2)}$ prove that if ' C ' be a closed
contour oriented in the contour clockwise direction, then $\int_{C} f(z) d x=2 \pi i$
* State and prove Cauchy's residue theorem.
* By the method of contour integration, show that
$\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x=\frac{\pi e^{-x}}{2 a}, a>0$.

1986

* Let $\mathrm{f}(\mathrm{z})$ be single valued and analytic with in and on a closed curve C . If z_{0} is any point interior to C , then show that $f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{z-z_{0}} d z$, where the integral is taken in the + ve sense around C .
* By contour integration method show that
(i) $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}=\frac{\pi \sqrt{2}}{4 a^{3}}$, where $\mathrm{a}>0$.
(ii) $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

1985

* Prove that every power series represents an analytic function within its circle of convergence.
* Prove that the derivative of a function analytic in a domain is itself an analytic function.
* Evaluate, by the method of contour integration $\int_{0}^{\infty} \frac{x \sin a x}{x^{2}-b^{2}} d x$

1984

* Evaluate by contour integration method :
(i) $\int_{0}^{\infty} \frac{x \sin m x}{x^{4}+a^{4}} d x$
(ii) $\int_{0}^{\infty} \frac{x^{a-1} \log x}{1+x^{2}} d x$
$(1998,1999)$
* Distinguish clearly between a pole and an essential singularity. If $z=a$ is an essential singularity of a function $\mathrm{f}(\mathrm{z})$, then for an arbitrary positive integers η, \in and ρ, prove that \exists a point z, such that $0<|z-a|<\rho$ for which $|f(z)-\eta|<\epsilon$.

1983

* Obtain the Taylor and Laurent series expansions which represent the function $\frac{z^{2}-1}{(z+2)(z+3)}$ in the regions (i) $|z|<2$ (ii) $2<|z|<3$ (iii) $|z|>3$.

IFoS
 PREVIOUS YEARS QUESTIONS (2020-2000) SEGMENT-WISE

COMPLEX ANALYSIS

(ACCORDING TO THE NEW SYLLABUS PATTERN) PAPER - II

2020

* Evaluate the integral $\int_{C} \operatorname{Re}\left(z^{2}\right)$ dz from 0 to $2+4 i$ along the curve C : $y=x^{2}$.
* Using Cauchy theorem and Cauchy integral formula, evaluate the integral
$\oint_{C} \frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}^{2}(\mathrm{z}+1)^{3}} \mathrm{dz}$ where C is $|\mathrm{z}|=2$.
* Show that the bilinear transformation
$w=e^{i \theta_{0}}\left(\frac{z-z_{0}}{z-\bar{z}_{0}}\right)$
Z_{0} being in the upper half of the z-plane, maps the upper half of the z-plane into the interior of the unit circle in the w-plane. If under this transformation, the point $\mathrm{z}=\mathrm{i}$ is mapped into $\mathrm{w}=0$ while the point at infinity is mapped into $w=-1$, then find this transformation.
[10]

2019

* Using Cauchy's Integral formula, evaluate the integral $x^{2}+y^{2}+z^{2}=a^{2}$

$$
\begin{equation*}
\text { where } \mathrm{c}:|\mathrm{z}-\mathrm{i}|=2 \text {. } \tag{08}
\end{equation*}
$$

* If $\mathrm{f}(\mathrm{z})$ is analytic in a domain D and $|\mathrm{f}(\mathrm{z})|$ is a nonzero constant in D, then show that $f(z)$ is constant in D.
(15)
* Classify the singular point $\mathrm{z}=0$ of the function $a^{2}+b^{2}=6 c^{2}$. and obtain the principal part of the Laurent series expansion of $f(z)$.

2018

* If $u=(x-1)^{3}-3 x y^{2}+3 y^{2}$, determine v so that $u+$ $i v$ is a regular function of $x+i y$
* Evaluate the integral $\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta$, where n is a positive integer.
* Find the constants a, b, c such that the function
$f(\mathrm{z})=2 x^{2}-2 x y-y^{2}+i\left(a x^{2}-b x y+c y^{2}\right)$ is analytic for all $z(=x+i y)$ and express $f(z)$ in terms of z.
* Evaluate :
$\int_{C} \frac{z}{z^{4}-6 z^{2}+1} d z$
when C is the circle $|z-i|=2$
* Find the bilinear transformation which map the points $-1, \infty, i$ into the points-
(i) i, $1,1+$ i
(ii) $\infty, i, 1$
(iii) $0, \infty, 1$
* Find the Laurent series expansion at $\mathrm{z}=0$ for the function
$f(z)=\frac{1}{z^{2}\left(z^{2}+2 z-3\right)}$
in the regions (i) $1<|z|<3$ and (ii) $|z|>3$.

2013

* Construct an analytic function
$f(z)=u(x, y)+i v(x, y)$, where
$v(x, y)=6 x y-5 x+3$.
Express the result as a function of z .
* Evaluate $\oint_{c} \frac{e^{2 z}}{(z+1)^{4}} d z$ where c is the circle $|z|=3$.
* Find Laurent series about the indicated singularity. Name the singularity and give the region of convergence.
$\frac{z-\sin z}{z^{3}} ; z=0$.

2012

* Evaluate the integral
$\int_{2-i}^{4+i}\left(x+y^{2}-i x y\right) d z$
along the line segment AB joining the points $\mathrm{A}(2,-1)$ and $\mathrm{B}(4,1)$.
* Showthatthefunction $u(x, y)=e^{-x}(x \cos y+y \sin y)$
is harmonic. Find its conjugate harmonic function $v(x, y)$ and the corresponding analytic function $\mathrm{f}(\mathrm{z})$.
(13)
* Using the Residue Theorem, evaluate the integral $\int_{C} \frac{e^{z}-1}{z(z-1)(z+i)^{2}} d z$,
where C is the circle $|\mathrm{z}|=2$

2011

* Expand the function
$f(z)=\frac{2 z^{2}+11 z}{(z+1)(z+4)}$
in a Laurent's series valid for $2<\mathrm{z}<3$.
* Examine the convergence of $\int_{0}^{\infty} \frac{d x}{(1+x) \sqrt{x}}$ and evaluate, if possible.
* State Cauchy's residue theorem. Using it, evaluate the integral
$\int_{C} \frac{e^{z / 2}}{(z+2)\left(z^{2}-4\right)} d z$
Counterclockwise around the circle $C:|z+1|=4$. (13)

2010

* Determine the analytic function
$f(z)=u+i v$ if $v=e^{x}(x \sin y+y \cos y)$
* Using the method of contour integration, evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)^{2}\left(x^{2}+2 x+2\right)}$
* Obtain Laurent's series expansion of the function $f(z)=\frac{1}{(z+1)(z+3)}$ in the region $0<|z+1| Z<2$

2009

Evaluate

$\int_{C} \frac{2 z+1}{z^{2}+z} d z$
By Cauchy's integral formula, where C is $|\mathrm{z}|=\frac{1}{2}$

* Determine the analytic function $w=u+\mathrm{iv}$, is
$u=\frac{2 \sin 2 x}{e^{2 y}+e^{-2 y}-2 \cos 2 x}$
* Evaluate by contour integration
$\int_{0}^{2 \pi} \frac{d \theta}{1-2 a \sin \theta+a^{2}}, 0<a<1$

2008

* Evaluate $\int_{C} \bar{z} d z$ from $\mathrm{z}=0$ to $\mathrm{z}=4+\mathrm{zi}$. Along the curve given by $z=t^{2}+i t$.
* Expand in a Laurent's series the function $f(z)=\frac{1}{(z-1) z^{2}}$ about $\mathrm{z}=0$.
* Find the residue of $f(z)=\tan z$ at $\pi / 2$.

2007

* If $f(z)=u+$ iv is analytic and
$u=e^{-x}(x \sin y-y \cos y)$ then find v and $\mathrm{f}(\mathrm{z})$.
* Applying Cauchy's criterion for convergence, show that the sequence $\left(S_{n}\right)$ defined by $S_{n}=1+1 / 2+1 / 3+\ldots .+$ is not convergent.
* Expand $f(z)=\frac{1}{(z+1)(z+3)} \quad$ in a Laurent series valid for $(i) 1<|z|>3$. (ii) $|z|>3$.
* Using residue theorem, evaluate
$\int_{0}^{2 \pi} \frac{d \theta}{(3-2 \cos \theta+\sin \theta)}$

2005

* If f is analytic, prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

(10/2006)

* Show that the transformation $w=\frac{5-4 z}{4 z-2}$ maps unit circle $|z|=1$ onto a circle of radius unity and centre at $-1 / 2$
(13/2006)
* Use contour integration technique to find the value of $\int_{0}^{2 p} \frac{d \theta}{2+\cos \theta}$
(14/2006)

2004

* Investigate the continuity at $(0,0)$ of the function

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

* Find the analytic function $f(z)=u(x, y)+i v(x, y)$
for which $u-v e^{x}(\cos y-\sin y)$.
* Find the bilinear transformation that maps $z=1,0, \infty$ to $w=0,-\infty, 1$ respectively.
* Find the singular points with their nature and the residues there at of $f(z)=\frac{\cot \pi z}{(z-1 / 3)^{2}}$
* Prove that a function analytic for all finite values of z and bounded, is a constant.

2003

* If $w=f(z)=u(x, y)+i v(x, y), z=x+i y, \quad$ is analytic in a domain, show that $\frac{\partial w}{\partial z}=0$. Hence or otherwise, show that $\sin (x+i 3 y)$ cannot be analytic
* Discuss the transformation $w=z+\frac{1}{z}$ and hence, show that
(1) a circle in z-plane is mapped on an ellipse in the w-plane
(2) a line in the z-plane is mapped into a hyperbola in the w-plane.
* Find the Laurent series expansion of the function $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ Valid in the region $2<|z|<3$.

2002

* If $f(z)$ has a simple pole with residue K at the origin and is analytic on $0<|z| \leq \mid$ Show that
$\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{(z-a)(z-b)} d z=\frac{f(a)-f(b)}{a-b}+\frac{K}{a b}$
Where $0<a, b,<1$ and C is the circle $|z|=1$.
If $f(a)=\oint_{C} \frac{3 z^{2}+7 z+1}{z-a} d z$ Where C is the circle $|z|=2 ;$ Find
(i) $f(1-i) ;(i i) f^{\prime \prime}(1-i) ;(i i i) f(1+i)$
* Under the bilinear transformation $w=\frac{3-z}{z-2}$

Find the images of
(1) $\left|z-\frac{5}{2}\right|=1 / 2$ and
(2) $\left|z-\frac{5}{2}\right|<1 / 2$ in the W-plane.

2001

* Compute the Taylor series around $\mathrm{z}=0$ and give the radius of convergence for $\frac{z}{z-1}$
* Show that the function $f(z)=\sqrt{x y}$ is not regular at the origin although the Cauchy-Riemann equations are satisfied
* By using the Residue Theorem evaluate the integral $\int_{0}^{2 \pi} \frac{d \theta}{1-2 a \sin \theta+a^{2}}$ Where $0<a<1$.

2000

* Expand the function $f(z)=\log (z+2)$ in a power series and determine its radius of convergence.
* Prove that the function $f(z)=u+i v$

Where $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}$
$f(0)=0$
Satisfies Cauchy-Riemann equations at the origin, but $f^{\prime}(0)$ does not exist.

$\nLeftarrow \nLeftarrow$

