Notation

\mathbb{Z}_n	Set of all residue classes modulo n The set of elements from X which are not in Y
X\Y N	The set of all natural numbers 1,2,3,
R	The set of all real numbers
S_n	Set of all permutations of the set $\{1,2,,n\}$
$GL_n(\mathbb{R})$	Set of all $n \times n$ invertible matrices with real entries
$\hat{\imath},\hat{\jmath},\hat{k}$	unit vectors having the directions of the positive x , y and z axes in a three dimensional rectangular coordinate system, respectively
M^T	Transpose of a matrix M

MA 2/13

SECTION - A

MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 - Q.10 carry one mark each.

- Q.1 Consider the function $f(x,y) = 5 4 \sin x + y^2$ for $0 < x < 2\pi$ and $y \in \mathbb{R}$. The set of critical points of f(x,y) consists of
 - (A) a point of local maximum and a point of local minimum
 - (B) a point of local maximum and a saddle point
 - (C) a point of local maximum, a point of local minimum and a saddle point
 - (D) a point of local minimum and a saddle point
- Q.2 Let $\varphi: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that φ' is strictly increasing with $\varphi'(1) = 0$. Let α and β denote the minimum and maximum values of $\varphi(x)$ on the interval [2, 3], respectively. Then which one of the following is TRUE?
 - (A) $\beta = \varphi(3)$
- (B) $\alpha = \varphi(2.5)$
- (C) $\beta = \varphi(2.5)$
- (D) $\alpha = \varphi(3)$
- Q.3 The number of generators of the additive group Z₃₆ is equal to
 - (A) 6
- (B) 12
- (C) 18
- (D) 36
- Q.4 $\lim_{n \to \infty} \frac{\pi}{n} \sum_{k=1}^{n} \sin\left(\frac{\pi}{2} + \frac{5\pi}{2} \cdot \frac{k}{n}\right) =$
 - $(A)\frac{2\pi}{s}$
- (B) $\frac{5}{2}$
- (C) $\frac{2}{5}$
- (D) $\frac{5\pi}{2}$
- Q.5 Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. If $g(u, v) = f(u^2 v^2)$, then

$$\frac{\partial^2 g}{\partial u^2} + \frac{\partial^2 g}{\partial v^2} =$$

- (A) $4(u^2 v^2)f''(u^2 v^2)$
- (B) $4(u^2 + v^2)f''(u^2 v^2)$
- (C) $2f'(u^2-v^2)+4(u^2-v^2)f''(u^2-v^2)$
- (D) $2(u-v)^2 f''(u^2-v^2)$
- $Q.6 \qquad \int_0^1 \int_x^1 \sin(y^2) dy \, dx =$
 - $(A) \frac{1+\cos 1}{2}$
- (B) $1 \cos 1$
 - (C) $1 + \cos 1$
- (D) $\frac{1-\cos 1}{2}$

Let $f_1(x)$, $f_2(x)$, $g_1(x)$, $g_2(x)$ be differentiable functions on \mathbb{R} . Let $F(x) = \begin{vmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{vmatrix}$ be the Q.7 determinant of the matrix $\begin{bmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{bmatrix}$. Then F'(x) is equal to

(A)
$$\begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1(x) & g_2(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & g_1'(x) \\ f_2'(x) & g_2(x) \end{vmatrix}$$

(B)
$$\begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1(x) & g_2(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & g_1'(x) \\ f_2(x) & g_2'(x) \end{vmatrix}$$

(C)
$$\begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1(x) & g_2(x) \end{vmatrix} = \begin{vmatrix} f_1(x) & g_1'(x) \\ f_2(x) & g_2'(x) \end{vmatrix}$$

(D)
$$\begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1'(x) & g_2'(x) \end{vmatrix}$$

Q.8 Let

$$f(x) = \frac{x + |x|(1+x)}{x} \sin\left(\frac{1}{x}\right), \quad x \neq 0.$$

Write $L = \lim_{x\to 0^-} f(x)$ and $R = \lim_{x\to 0^+} f(x)$. Then which one of the following is TRUE?

- (A) L exists but R does not exist
- (B) L does not exist but R exists
- (C) Both L and R exist
- (D) Neither L nor R exists

Q.9 If
$$\lim_{T\to\infty} \int_0^T e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
, then

$$(A)\frac{\sqrt{\pi}}{4}$$

$$\lim_{T \to \infty} \int_0^T x^2 e^{-x^2} dx =$$
(B) $\frac{\sqrt{\pi}}{2}$ (C) $\sqrt{2\pi}$

(D)
$$2\sqrt{\pi}$$

Q.10

$$f(x) = \begin{cases} 1+x & \text{if } x < 0 \\ (1-x)(px+q) & \text{if } x \ge 0 \end{cases}$$

satisfies the assumptions of Rolle's theorem in the interval [-1,1], then the ordered pair (p,q) is

- (A)(2,-1)
- (B) (-2,-1) (C) (-2,1)
- (D) (2,1)

Q. 11 - Q. 30 carry two marks each.

The flux of the vector field

$$\vec{F} = \left(2\pi x + \frac{2x^2y^2}{\pi}\right)\hat{\imath} + \left(2\pi xy - \frac{4y}{\pi}\right)\hat{\jmath}$$

along the outward normal, across the ellipse $x^2 + 16y^2 = 4$ is equal to

- (A) $4\pi^2 2$
- (B) $2\pi^2 4$ (C) $\pi^2 2$
- (D) 2π

Q.12 Let \mathcal{M} be the set of all invertible 5×5 matrices with entries 0 and 1. For each $M \in \mathcal{M}$, let $n_1(M)$ and $n_0(M)$ denote the number of 1's and 0's in M, respectively. Then

$$\min_{M\in\mathcal{M}} |n_1(M) - n_0(M)| =$$

- (A) 1
- (B) 3
- (C) 5
- (D) 15

Q.13 Let
$$M = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 0 & 1 \end{bmatrix}$$
 and $x = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Then

 $\lim_{n\to\infty}M^nx$

(A) does not exist

(B) is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

(C) is $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$

(D) is $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Q.14 Let $\vec{F} = (3 + 2xy)\hat{i} + (x^2 - 3y^2)\hat{j}$ and let *L* be the curve

$$\ddot{r}(t) = e^t \sin t \, \hat{\imath} + e^t \cos t \, \hat{\jmath} \,, \qquad 0 \le t \le \pi.$$

Then

$$\int_L \vec{F} \cdot d\vec{r} =$$

- (A) $e^{-3\pi} + 1$

- (B) $e^{-6\pi} + 2$ (C) $e^{6\pi} + 2$ (D) $e^{3\pi} + 1$

0.15 The line integral of the vector field

$$\vec{F} = zx \hat{\imath} + xy \hat{\jmath} + yz \hat{k}$$

along the boundary of the triangle with vertices (1,0,0), (0,1,0) and (0,0,1), oriented anticlockwise, when viewed from the point (2,2,2), is

- $(A)^{\frac{-1}{2}}$
- (C) $\frac{1}{2}$
- (D) 2

Q.16 The area of the surface $z = \frac{xy}{3}$ intercepted by the cylinder $x^2 + y^2 \le 16$ lies in the interval

- (A) $(20\pi, 22\pi]$
- (B) $(22\pi, 24\pi]$
- (C) $(24\pi, 26\pi]$
- (D) $(26\pi, 28\pi]$

Q.17 For a > 0, b > 0, let $\vec{F} = \frac{x\vec{j} - y\vec{i}}{b^2x^2 + a^2y^2}$ be a planar vector field. Let

$$C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = a^2 + b^2\}$$

be the circle oriented anti-clockwise. Then

$$\oint_C \vec{F} \cdot d\vec{r} =$$

- $(A)\frac{2\pi}{ab}$
- (B) 2π
- (C) 2πab
- (D) 0

Q.18 The flux of $\vec{F} = y \hat{i} - x\hat{j} + z^2\hat{k}$ along the outward normal, across the surface of the solid

$$\left\{ \, (x,y,z) \in \, \mathbb{R}^3 \, \left| \, \, 0 \leq x \leq 1, \, \, \, 0 \leq y \leq 1, \, \, \, 0 \leq z \leq \sqrt{2-x^2-y^2} \, \right\} \right.$$

is equal to

- $(A)\frac{2}{3}$
- $(B)^{\frac{5}{3}}$
- (C) $\frac{8}{3}$
- (D) $\frac{4}{3}$

Q.19 Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(2) = 2 and

$$|f(x) - f(y)| \le 5(|x - y|)^{3/2}$$

for all $x \in \mathbb{R}$, $y \in \mathbb{R}$. Let $g(x) = x^3 f(x)$. Then g'(2) =

- (A) 5
- (B) $\frac{15}{2}$
- (C) 12
- (D) 24

Q.20 Let $f: \mathbb{R} \to [0, \infty)$ be a continuous function. Then which one of the following is NOT TRUE?

- (A) There exists $x \in \mathbb{R}$ such that $f(x) = \frac{f(0) + f(1)}{2}$
- (B) There exists $x \in \mathbb{R}$ such that $f(x) = \sqrt{f(-1)f(1)}$
- (C) There exists $x \in \mathbb{R}$ such that $f(x) = \int_{-1}^{1} f(t) dt$
- (D) There exists $x \in \mathbb{R}$ such that $f(x) = \int_0^1 f(t)dt$

Q.21 The interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{1}{(-3)^{n+2}} \frac{(4x-12)^n}{n^2+1}$$

is

- (A) $\frac{10}{4} \le x < \frac{14}{4}$
- (B) $\frac{9}{4} \le x < \frac{15}{4}$
- (C) $\frac{10}{4} \le x \le \frac{14}{4}$
- (D) $\frac{9}{4} \le x \le \frac{15}{4}$
- Q.22 Let \mathcal{P}_3 denote the real vector space of all polynomials with real coefficients of degree at most 3. Consider the map $T: \mathcal{P}_3 \to \mathcal{P}_3$ given by T(p(x)) = p''(x) + p(x). Then
 - (A) T is neither one-one nor onto
 - (B) T is both one-one and onto
 - (C) T is one-one but not onto
 - (D) T is onto but not one-one
- Q.23 Let $f(x,y) = \frac{x^2y}{x^2+y^2}$ for $(x,y) \neq (0,0)$. Then
 - (A) $\frac{\partial f}{\partial x}$ and f are bounded
 - (B) $\frac{\partial f}{\partial x}$ is bounded and f is unbounded
 - (C) $\frac{\partial f}{\partial x}$ is unbounded and f is bounded
 - (D) $\frac{\partial f}{\partial x}$ and f are unbounded
- Q.24 Let S be an infinite subset of \mathbb{R} such that $S \setminus \{\alpha\}$ is compact for some $\alpha \in S$. Then which one of the following is TRUE?
 - (A) S is a connected set
 - (B) S contains no limit points
 - (C) S is a union of open intervals
 - (D) Every sequence in S has a subsequence converging to an element in S

Q.25

$$\sum_{n=1}^{\infty} \tan^{-1} \frac{2}{n^2} =$$

(A) $\frac{\pi}{4}$

(B) $\frac{\pi}{2}$

(C) $\frac{3\pi}{4}$

(D) π

Q.26 Let $0 < a_1 < b_1$. For $n \ge 1$, define

$$a_{n+1} = \sqrt{a_n b_n}$$
 and $b_{n+1} = \frac{a_n + b_n}{2}$.

Then which one of the following is NOT TRUE?

- (A) Both $\{a_n\}$ and $\{b_n\}$ converge, but the limits are not equal
- (B) Both $\{a_n\}$ and $\{b_n\}$ converge and the limits are equal
- (C) $\{b_n\}$ is a decreasing sequence
- (D) $\{a_n\}$ is an increasing sequence

Q.27

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{3}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{9}}+\cdots+\frac{1}{\sqrt{3n}+\sqrt{3n+3}}\right)=$$

- (A) $1 + \sqrt{3}$
- (B) $\sqrt{3}$
- (C) $\frac{1}{\sqrt{3}}$
- (D) $\frac{1}{1+\sqrt{3}}$

- Which one of the following is TRUE? O.28
 - (A) Every sequence that has a convergent subsequence is a Cauchy sequence
 - (B) Every sequence that has a convergent subsequence is a bounded sequence
 - (C) The sequence {sin n} has a convergent subsequence
 - (D) The sequence $\{n\cos\frac{1}{n}\}$ has a convergent subsequence
- A particular integral of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^{2x}\sin x$$

(A)
$$\frac{e^{2x}}{10}(3\cos x - 2\sin x)$$

(B)
$$-\frac{e^{2x}}{10}(3\cos x - 2\sin x)$$

$$(C) - \frac{e^{2x}}{5}(2\cos x + \sin x)$$

(D)
$$\frac{e^{2x}}{5}(2\cos x - \sin x)$$

Q.30 Let y(x) be the solution of the differential equation

$$(xy + y + e^{-x})dx + (x + e^{-x})dy = 0$$

satisfying y(0) = 1. Then y(-1) is equal to

- (A) $\frac{e}{e-1}$ (B) $\frac{2e}{e-1}$ (C) $\frac{e}{1-e}$
- (D) 0

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q. 31 - Q. 40 carry two marks each.

Q.31 For $\alpha, \beta \in \mathbb{R}$, define the map $\varphi_{\alpha,\beta} : \mathbb{R} \to \mathbb{R}$ by $\varphi_{\alpha,\beta}(x) = \alpha x + \beta$. Let

$$G = \left\{ \varphi_{\alpha,\beta} \mid (\alpha,\beta) \in \mathbb{R}^2 \right\}$$

For $f, g \in G$, define $g \circ f \in G$ by $(g \circ f)(x) = g(f(x))$. Then which of the following statements is/are TRUE?

- (A) The binary operation is associative
- (B) The binary operation is commutative
- (C) For every $(\alpha, \beta) \in \mathbb{R}^2$, $\alpha \neq 0$ there exists $(a, b) \in \mathbb{R}^2$ such that $\varphi_{\alpha, \beta} \circ \varphi_{\alpha, b} = \varphi_{1, 0}$
- (D) (G, \circ) is a group
- 0.32 The volume of the solid

$$\left\{(x,y,z)\in \mathbb{R}^3 \,\middle|\, 1\leq x\leq 2, \qquad 0\leq y\leq \frac{2}{x}, \qquad 0\leq z\leq x\right\}$$

is expressible as

(A)
$$\int_{1}^{2} \int_{0}^{2/x} \int_{0}^{x} dz \, dy \, dx$$

(B)
$$\int_{1}^{2} \int_{0}^{x} \int_{0}^{2/x} dy \, dz \, dx$$

(C)
$$\int_0^2 \int_1^z \int_0^{2/x} dy \, dx \, dz$$

(D)
$$\int_0^2 \int_{\max\{z,1\}}^2 \int_0^{2/x} dy \, dx \, dz$$

- Q.33 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function. Then which of the following statements is/are TRUE?
 - (A) If f is differentiable at (0,0), then all directional derivatives of f exist at (0,0)
 - (B) If all directional derivatives of f exist at (0,0), then f is differentiable at (0,0)
 - (C) If all directional derivatives of f exist at (0,0), then f is continuous at (0,0)
 - (D) If the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous in a disc centered at (0,0), then f is differentiable at (0,0)
- Q.34 If X and Y are $n \times n$ matrices with real entries, then which of the following is/are TRUE?
 - (A) If $P^{-1}XP$ is diagonal for some real invertible matrix P, then there exists a basis for \mathbb{R}^n consisting of eigenvectors of X
 - (B) If X is diagonal with distinct diagonal entries and XY = YX, then Y is also diagonal
 - (C) If X^2 is diagonal, then X is diagonal
 - (D) If X is diagonal and XY = YX for all Y, then $X = \lambda I$ for some $\lambda \in \mathbb{R}$

- Q.35 Let G be a group of order 20 in which the conjugacy classes have sizes 1, 4, 5, 5, 5. Then which of the following is/are TRUE?
 - (A) G contains a normal subgroup of order 5
 - (B) G contains a non-normal subgroup of order 5
 - (C) G contains a subgroup of order 10
 - (D) G contains a normal subgroup of order 4
- Q.36 Let $\{x_n\}$ be a real sequence such that $7x_{n+1} = x_n^3 + 6$ for $n \ge 1$. Then which of the following statements is/are TRUE?
 - (A) If $x_1 = \frac{1}{2}$, then $\{x_n\}$ converges to 1
 - (B) If $x_1 = \frac{1}{2}$, then $\{x_n\}$ converges to 2
 - (C) If $x_1 = \frac{3}{2}$, then $\{x_n\}$ converges to 1
 - (D) If $x_1 = \frac{3}{2}$, then $\{x_n\}$ converges to -3
- Q.37 Let S be the set of all rational numbers in (0,1). Then which of the following statements is / are TRUE?
 - (A) S is a closed subset of \mathbb{R}
 - (B) S is not a closed subset of \mathbb{R}
 - (C) S is an open subset of \mathbb{R}
 - (D) Every $x \in (0,1) \setminus S$ is a limit point of S
- Q.38 Let M be an $n \times n$ matrix with real entries such that $M^3 = I$. Suppose that $Mv \neq v$ for any non-zero vector v. Then which of the following statements is / are TRUE?
 - (A) M has real eigenvalues
 - (B) $M + M^{-1}$ has real eigenvalues
 - (C) n is divisible by 2
 - (D) n is divisible by 3
- Q.39 Let y(x) be the solution of the differential equation

$$\frac{dy}{dx} = (y-1)(y-3)$$

satisfying the condition y(0) = 2. Then which of the following is/are TRUE?

- (A) The function y(x) is not bounded above
- (B) The function y(x) is bounded
- (C) $\lim_{x\to +\infty} y(x) = 1$
- (D) $\lim_{x \to -\infty} y(x) = 3$

Q.40 Let $k, \ell \in \mathbb{R}$ be such that every solution of

$$\frac{d^2y}{dx^2} + 2k\frac{dy}{dx} + \ell y = 0$$

satisfies $\lim_{x\to\infty} y(x) = 0$. Then

- (A) $3k^2 + \ell < 0$ and k > 0
- (B) $k^2 + \ell > 0$ and k < 0
- (C) $k^2 \ell \le 0$ and k > 0
- (D) $k^2 \ell > 0, k > 0$ and $\ell > 0$

SECTION - C

NUMERICAL ANSWER TYPE (NAT)

Q.41-Q.50 carry one mark each.

- Q.41 If the orthogonal trajectories of the family of ellipses $x^2 + 2y^2 = c_1$, $c_1 > 0$, are given by $y = c_2 x^{\alpha}$, $c_2 \in \mathbb{R}$, then $\alpha = \underline{\hspace{1cm}}$
- Q.42 Let G be a subgroup of $GL_2(\mathbb{R})$ generated by $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$. Then the order of G is
- Q.43 Consider the permutations $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 3 & 7 & 8 & 6 & 1 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 3 & 1 & 7 & 6 & 8 & 2 \end{pmatrix}$ in S_8 . The number of $\eta \in S_8$ such that $\eta^{-1} \sigma \eta = \tau$ is equal to ______
- Q.44 Let P be the point on the surface $z = \sqrt{x^2 + y^2}$ closest to the point (4,2,0). Then the square of the distance between the origin and P is
- Q.45 $\left(\int_0^1 x^4 (1-x)^5 dx \right)^{-1} = \underline{\hspace{1cm}}$
- Q.46 Let $v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Let M be the matrix whose columns are $v_1, v_2, 2v_1 v_2, v_1 + 2v_2$ in that order. Then the number of linearly independent solutions of the homogeneous system of linear equations Mx = 0 is ______

Q.47
$$\frac{1}{2\pi} \left(\frac{\pi^3}{1! \, 3} - \frac{\pi^5}{3! \, 5} + \frac{\pi^7}{5! \, 7} - \dots + \frac{(-1)^{n-1} \pi^{2n+1}}{(2n-1)! \, (2n+1)} + \dots \right) = \underline{\hspace{1cm}}$$

- Q.48 Let P be a 7×7 matrix of rank 4 with real entries. Let $a \in \mathbb{R}^7$ be a column vector. Then the rank of $P + aa^T$ is at least _____
- Q.49 For x > 0, let [x] denote the greatest integer less than or equal to x. Then $\lim_{x \to 0^+} x \left(\left| \frac{1}{x} \right| + \left| \frac{2}{x} \right| + \dots + \left| \frac{10}{x} \right| \right) = \underline{\qquad}$
- Q.50 The number of subgroups of $\mathbb{Z}_7 \times \mathbb{Z}_7$ of order 7 is ______
- Q. 51 Q. 60 carry two marks each.
- Q.51 Let y(x), x > 0 be the solution of the differential equation

$$x^2 \frac{d^2 y}{dx^2} + 5x \frac{dy}{dx} + 4y = 0$$

satisfying the conditions y(1) = 1 and y'(1) = 0. Then the value of $e^2y(e)$ is _____

Q.52 Let T be the smallest positive real number such that the tangent to the helix

$$\cos t \,\,\hat{\imath} + \sin t \,\hat{\jmath} + \frac{t}{\sqrt{2}} \,\,\hat{k}$$

at t = T is orthogonal to the tangent at t = 0. Then the line integral of $\vec{F} = x\hat{j} - y\hat{i}$ along the section of the helix from t = 0 to t = T is _____

Q.53 Let
$$f(x) = \frac{\sin \pi x}{\pi \sin x}$$
, $x \in (0, \pi)$, and let $x_0 \in (0, \pi)$ be such that $f'(x_0) = 0$. Then

$$(f(x_0))^2(1+(\pi^2-1)\sin^2 x_0) =$$

- Q.54 The maximum order of a permutation σ in the symmetric group S_{10} is ______
- Q.55 Let $a_n = \sqrt{n}$, $n \ge 1$, and let $s_n = a_1 + a_2 + \dots + a_n$. Then

$$\lim_{n\to\infty}\left(\frac{a_n/s_n}{-\ln(1-a_n/s_n)}\right)=\underline{\hspace{1cm}}$$

Q.56 For a real number x, define [x] to be the smallest integer greater than or equal to x. Then

$$\int_0^1 \int_0^1 \int_0^1 ([x] + [y] + [z]) \ dx \ dy \ dz = \underline{\hspace{1cm}}$$

Q.57 For x > 1, let

$$f(x) = \int_{1}^{x} \left(\sqrt{\log t} - \frac{1}{2} \log \sqrt{t} \right) dt$$

The number of tangents to the curve y = f(x) parallel to the line x + y = 0 is

Q.58 Let $\alpha, \beta, \gamma, \delta$ be the eigenvalues of the matrix

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 - 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Then $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 =$

0.59 The radius of convergence of the power series

$$\sum_{0}^{\infty} n! \, x^{n^2}$$

is _____

Q.60 If

$$y(x) = \int_{\sqrt{x}}^{x} \frac{e^{t}}{t} dt, \ x > 0$$

then $y'(1) = _____$

END OF THE QUESTION PAPER