मान्यम

प्रश्न पत्र

गुपद्य

 15 और काग ' B ' गे 25 पर्नों ख्था काप 'C' मे से 20 प्र्नों के चन्तर देने है। यी़ि निर्घीरित
 'C' से 20 हत्तरू' की जाएँ की जाएगी।

3. उरतार पत्रक के पृष्व ; मे दिए गए स्थाम पर ज्रमना रोल नम्बत, नाम तथा दस रहैमा पुस्तिका का

 मूल्वंकन गहा 各 1
6. स्याग ' A ' धि्या गदाग ' B ' के प्रत्गेक प्रश्न के नीतो प्रार विकन्य हिए गर है 1 दनमें से फेबत्त रक

 होगी 1
 कर्क बनुमति दी जम्एकी 1
 नाय करता है।

4-C-H

INSTRUCTIONS

1. This Test Booklet contains one hundred and twenty (20 Part'A'i-40 Part 'B' +60 Part 'C') Muttiple Choice Questions (MCQs). You are required to answer a maximum of 15,25 and 20 questions from part ' $A^{\prime} \cdot B^{\prime}$ ' and $\cdot{ }^{\prime} \mathrm{C}^{\prime}$ respectively. If more than required number of questions are answered, moly first 15,25 and 20 questions in Parts ' A ' ' B ' and ' C ' respectively, will be taken up for evaluation.
2. OMR answer sheet has been provided separately. Before you start filling up your particulars, piease ensure that the booklet contains requisite number of pages and that these are not torn or mutiatared. If it is so, you may request the lnvigitator to change the booklet of the same code. Likewise, check the OMR answer sheet also. Sheets for rough work have been appended to the test bookier.
3. Write your Roll No., Name and Serial Number of this Test Booklet on the OMR Answer sheet in the space provided. Also put your signatures in the space carmarked.
4. You must darken the apacopriate circles with a black ball nen related to Roll Number, Subiset Code, Rooklet Code and Centre Code on the OMR answer shect. It is the sole restonsibibitity of the candidate to meticulously follow the instructions given on the OMR Answer Sheet fsilitg which, the computer shall not be able to decipher the correct detgils which may ultimately resulf in loss includine reiection of the OMR answer shect.
5. Each question in Part 'A' carries 2 marks, Part ' B ' 3 marks and Part ' C ' $\mathbf{4 . 7 5}$ marks respectively. There will be regative marking (@) 0.5 marks in Par ' A ' and @ 0.75 marks in Part ' B ' for each wrong answer and no negative marking for Part ' C '.
6. Below each question in Part ' A ' and ' B ', four altematives or responses are given. Only one of these alternatives is the "correct" option to the question. You have to find, for cach question, the correct or the best answer. In Part ' C ' each question may have 'ONE' or 'MORE' correct options. Credit in a question shall be given only on identification of 'AlL' the correct options in Part ' C '.
7. Candidates found copying or resorling to any unfair means are fiable to be disqualified from this and future examinations,
8. Candidate should not write anything anywhere except on OMR answer shect or shects for rough work.
9. Use of calculator is not permitted.
10. After the test is oyer, at the pergoration aning, tear the OMR answer, shect, hand over the orisinat OMR answer sheet to the invigidator and retain the carbonless cony for your recoed.
1t. Candidates who sit for the entire duration of the exam will only be permitted to carry their Test bookiet.

भाग/PART - A

1. एक जिरकॉन केसास (क्रिस्टत) की, जिसमें एक वर्गींय प्रिज्म एवं दो समरूषा वर्गीय पिरामिड हैं, की विमायें (cm में) दिखायी चयी हैं। इस केलास (क्रिस्टल) का आयतन (cm " मे) क्या है?

2. 3.2
3. 3.6
4. 6.4
5. 7.2 ,
6. The diagran shows the dimensions (in cm) of a zincon crystal. having a square prism and two identical square pyramids. What is the volume of this crystal (in $\left.\mathrm{cm}^{3}\right)^{?}$

7. 3.2
8. 3.6
9. 6,4
10. 7.2
11. एक बालक φ मति से एक गेंद को उसकी लरफ \checkmark सति से आते हुये दाहून की तरफ फकता

है। वाहन से टकराकर आने पर मैद ब्रालक को जिस कति से प्रतार करंश्री, वह है

1. v
2. $v+V$
3. $v+2 V$
4. $v+4 v$
5. A boy throws a ball with a speed v at a vehicle that is approaching him with a speed V. After bouncing from the vehicle, the ball hits the boy with a speed
6. v
7. $v+V$
8. $v+2 V$
9. $v+4 v$
10. चार मित्र एक भीजा आयस मे बौर रहै से उन्हैने निर्णय किया कि उत्क में सबसे बके नित्र को पीजा का एक असिरिक्त हुक्ञा मितेगा। बाहु, कटृंट्पा से दो मतीजे कड़ा है जो कि अम्क्ता से तांन महीने छोटा है। देवसेना. कट्ट्प्पा से एक मरीने बही क्षे पीजा का एक अधिक द्रुड़ा किस्को मिला?
i. बाहु
11. द्ववसेता
12. भल्ला
कट्टटम्पा
13. Four friends were sharing a pizza. They decided that the oldest friend will get an extra plece of pizza. Bahu is two months older than Kattappa, who in tum is thee months younger than Bhollia. Devsens is one month older than Kattappa. Who should get the extra piece of pizza?
14. Baku
15. Devsena
16. Bhalla
17. Kattappa
18. अनुप्तस्थ काद A के बेलनाकार पात्र से एक
 को दर्शाथा गया है। दिशनुसारा, बेलन्न में इस
 तक जल कर जाता है। यदि बेलनाक्कार पात्र के जल को नीचे x दूरी $(x<i)$ तक दमाया जाता है। तब कीप मे पान्न की तल

19. बिलकुस नही बदलता है
20. $\frac{A x}{\pi 1^{2}}$ से उपर उक्ता है
21. $\frac{\pi t^{2}}{A t}$ से उपर उठता है
22. $\frac{A^{2} x}{x^{2} 1^{4}}$ से अप्पर उठता है
23. A fumnel is connected to a cylindrical vessel of cross sectional area A as shown, to make an interconnected system of vessels. Water is poured in the cylinder such that the height of waser in the funnel is $/$ as shown. If the level of water in the cylindrical vessel is pushed down by a distance $x \lll I_{\text {r }}$ the level of water in the farnel:

24. renains unchanged
25. rises by $\frac{d x}{\pi 0^{2}}$
26. rises by $\frac{\pi I^{2}}{A x}$
27. rises by $\frac{A^{2} x}{z^{2} x^{4}}$
28. समत कर्तां के अंक (30 अंक में से) एक परीक्ता मे $4,15,6,7,5, a$ तथा b हैं। खहां पर $a(\%)$ 4 का गुणन है, तथा b एक अमाज्य अंक है। इस समूह में अंकर्क की रैज (स्त्रूge) (अभिक्तम अंक - न्यू्नतम अंक) में सर्वीधिक संमब अंक क्या है?
29. 25
30. 26
31. 27
32. 29
33. Marks (out of 30) of seven students in an examination are $4,15,6,7,5, a$ and b, where $a(>0)$ in a multiple of 4 and b is a prime. What is the mpximum possible valtue of the range of marks (i.e. maximun mark-minimum mark)?
34. 25
35. 26
36. 27
37. 29
38. दो व्यक्ति A और B एक बिन्दु से दिपरीत दिशाओं ने घलना प्रारंभ करते है। A की गति B से दुग्नी है। B की गति $1 \mathrm{~km} / \mathrm{h}$ है। यद्दि 2 km घलने के पश्चह्त् A वापक मुडकर B की तरफ चलना प्रारंम करता है, तो A प्रारीकिक बिन्दु से कितनी दूरी पर B से आगे सिकलता है?
39. 2 kam
40. 4 km
41. 6 km
42. 8 km
43. Two persens A and B start walking in opposite directions from a point. A trayels twice as fast as B. The speed at which B traveds is I km / h. If A traveis 2 km and turns back and starts walking towards B , at what distance from the starting poiot will A cross B ?

1. 2 km	2. 4 km
3. 6 km	4.8 km

7. एक ए्यक्ति कार से घारवाग से आलसबाग तक $6 \mathrm{~m} \mathrm{~km} / \mathrm{h}$ की औसत गति से चलना चाहत है। चारदाग से आलमबाग की दूरो 2 kx है। अत्यधिक्त मीड़ की वज्ता से वह पहले एक किलोमौटर मे केष्षल 30 kmb की औसत गति से चल सक्षा बची हुई यात्रा में वह किस गति स亠 चले कि $60 \mathrm{~km} / \mathrm{h}$ को औरत गति के लक्य को आा सके?
8. लक्ष्य को प्रपप्त नहीँ कर सकता
9. $60 \mathrm{~km} / \mathrm{s}$
10. $90 \mathrm{~km} / \mathrm{h}$
11. $\quad 120 \mathrm{~km} / \mathrm{h}$
12. A person warted to travel frome Cltariong to Alambag with an average speed of 60 kmoh by car, The distance between Chatbag and Alartbag is 2 km . Duse to heavy traffic, he corild travel at $30 \mathrm{~km} / \mathrm{h}$ for the first kilonetre of his joumey. Whast should his speed be for the remaining journey to achieve his average speed target of $60 \mathrm{~km} / \mathrm{h}$?
13. Camot achieve his targe with any frutute speed.
14. $60 \mathrm{~km} / \mathrm{h}$
15. $90 \mathrm{~km} / \mathrm{h}$
16. $120 \mathrm{~km} / \mathrm{h}$

8．एक स्यान पर वर्ष 2003 से 2005 की 3 वर्म की अवीजिे के लिए औसत वर्षा 65 cm थीं। वर्ष 2002 से 2004 के तीन्न वर्षा मे औभत वर्षा 63 cm 新 वर्ष 2005 की वास्तनिक प्रष्ष 60 cm चा！वर्य 2002 में कित्तनी वर्षा हुरे？
1． 55 cm
2． 60 cm
3． 54 cm
4． 53 cm

8．The average rainfall over a given place during the three－year period of 2003－2005 was 65 cm ．During the three－ycar period $2002-2004$ the average rainfati was 63 cm ， The actual rainfall during 2005 was 60 cm ． What was the rainfall in 20027
1． 55 cm
2． 60 cm
3． 54 cm
4． 53 cm

9．लमातार चदर दिलन⿱亠䒑⿱⺊口灬 में यार विमान चालको मे से प्रत्येक ने अक्य－अलग दिन विमान उछाया। थ A को कार्य सूर्य के अनुसार मोमव्यद को विमान उछाला या परंतु 财 A ने सुर्री B के साय अदलान्बदली कर ती जबकि सुख B को मूलत् नुध्वार को विमान उड़्ना था। सुती C ने भी D से अंदल－बदली कर ली द्रिन्हु मूलत： गुस्वार को टिमान्न उड़ाना था। फूर्णतया अदला－ बदली करने के पश्घाल् मंगलन्यार को किस्ने कार्य किया？
1．新 A
2．却（1）
3．सुऔी B

9．In a foum consecuive day schedule，four pilats flew flights each on a different day． Mr．A was scheduled to work on Monday， but he traded with Ms．B who was originally sciteduled to work on Weinesday．Ms．C traded with Mr．D， who was originally soheduled to work oal Thursday．After all the switching was done，who worked on Tuesday？
1．Mr．A
2．Mr．D
3．Ms．B
4．Ms．C

10．उ：ग्राम（ 6 गाम）कार्बन 40 ग्राम ऑस्तीजन के वायुमडडत में पूर्णत：जताया भुया। कित्ताे प्रतिशत औँक्सीजन होग्न रही？
1． 80
2． 60
3． 40
4． 20

10．After 6 g of carbon is completely bumt in an atmosphere of 40 g of oxygen，the percentage oxygen［efitis：
1． 80
2． 60
3． 40
4． 20

11．किसी समबाहु त्रिजुज्ञ मे कृत्त के तौन सम सूपौस कागी से अनने व्वाते क्षेत्र को होडकर शें क्षे द्वयांकित कर चित्र में दलाया गया है। क्रयांक्ति भम्न समवातु निद्युज के कुतन क्षेत्रफक्ष का कितन्ता अंश है？

1． $1-\frac{\pi}{2 \sqrt{3}}$
2．$\frac{\pi}{2 \sqrt{3}}$ ．
3． $1-\frac{2 \pi}{\sqrt{3}}$
4． $1-\frac{\sqrt{3}}{3}$

11．What fraction of the equilateral triangle shown below with three idertical sectors of a circle is shaded？

1． $1-\frac{\pi}{2 \sqrt{3}}$
2．$\frac{\pi}{2 \sqrt{3}}$
3． $1-\frac{2 \pi}{\sqrt{3}}$
4． $1-\frac{\sqrt{3} \pi}{2}$

12．सौद्रा，टमादर，ज्याज，चुकह्दर तथा गमजर से अलक्यन्नग प्रकार के किल्तने संताद बनाये जा सकते है？
1． 16
2． 28
3． 31
4． 32

12．How many difierent solzds can be faide from cuicumber，tomatoes，onions，beetreot and carrots？
1．is
2． 28
3． 31
4． 32
13. एक इक्र की बोतल खोलने पर 10 मा. की दूरी पर यड़े स्यक्ति को 10 सैंकेन्ड बाद घुशव् आता है। 20 मीटर की दूरी पर ख़े व्यक्तित को लगभग कितले समख बाद युशन्यू वंहुपेती?

1. 20 s
2. 40 s
3. 14 s
4. 80 s
5. A bettie of perfume is opened and a person at a distance of 10 m gets the smet! after 10 seconds. The time taken tor a persan 20 m away to get the smell is about
I. 20 s
6. 40 s
7. 14 s
8. 80 s
9. एक यनिज मे घनाकार और गोलाकार गुहिकायें हैं। घन को भुजा की लंबाई गोले के ब्यसस के बराबर है। यदि घन्यकार गुदिका एक द्व से आधी भरी हुर्फ है और गोलाकार गुहिका तरल से पूरी भरी हुई है तो घनाकार और גोलाकार गुहिकाओं में द्रव के आयतन को लगभग अनुपात क्या है?
10. $2: 1$
11. $1: 1$
12. $1: 2$
13. 1:4
14. A mineral contains a cubic and a spherical cavity. The length of the side of the cube is the same as the diameter of the sphere. If the cubic cavity is half fitled with a liquid and the spherical cavity is completely filled with liquid, what is the approximate ratio of the volume of liquird in the cubic cavity to that in the spherical cavity?
15. $2: 1$
16. $\mathrm{I}: 1$
17. $1: 2$
18. 1:4
19. 6 अर्नभिनत सिक्षर्क मे से 5 को स्वतंत्र रूप से उजला अकता है और सकी में सिर ऊपर आता है। यदि $6^{1 /}$ सिक्का स्वतंन रूप से उछाला जाये तब सिर ऊपर मिलने की संभाइना है
20. 1
21. 0
22. $1 / 2$
23. $1 / 6$
24. Out of 6 unbiased coins, 5 are tossed independently and they all result in heads. If the $6^{\text {th }}$ is now independently tossed, the probability of getting head is
25. 1
26. 0
27. $1 / 2$
28. $1 / 6$
29. क्रूम में अगत्क धित्र क्या हो सक्ता है?

30. What could the foumh figure in the sequence be?

31.

2.

3.
4.

17. $A, 8$ और C की औसत आगयु 30 है, तथा उनकी आय क्रमशः पूर्णौक x, y एवं z है. $(x \leq y \leq z)$ । यदि B की आयु A की अयु से ठैक 5 अधिक है, तो z का न्यूनतम संभव मान क्या है?

1. 31
2. 33
3. 35
4. 37
5. The average age of $A_{4} B$ and C, whose ages are integers x, y and z respectively $(x \leq y \leq z)$, is 30 . If the age of B is exactly 5 more than that of A, what is the minimum possible value of z ?
6. 31
7. 33
8. 35
9. 37
10. विश्वक्विद्यालय में विजान के समी विद्यार्यायौं का प्रतिशत विलरण पाई-सित्र मे द्विया गया है। द्वार-चिन्न में भौतितिकी के विभिक्न उप-क्षेत्रौ का दितरण दर्थाय गया है उहां एक विद्यार्था केवल एक ही उप क्षेत्र ले सक्ता है। विज़ान के कुल विद्यार्थियों में क्वाट्रू-यंत्रिकी पद्ने बसली लइकियो का प्रतिशत क्या है?

11. 10
12. 1
13. 0.2
14. 2
15. Percentage-wise distribution of all science students in a university is given in the piediagram. The bar chart shows the distribution of physics students in different stab-areas, where a student takes one and only one sub-area. What percentage of the total science students is girts studying quantum mechanics?

16. 10
17. 1
18. 0.2
19. 2
20. दिये हुए चित्र में समांतर चत्तुर्भुजो की कुल संख्या क्या है?

21. 27
22. 24
23. 22
24. 14
25. What is the tofal number of parsllelograms in the given diagrams?

26. 27
27. 24
28. 22
29. 14
30. तालिका मं एक शहर के तीन खण्ज ($A, ~ B$ एवं C) क चुनाव परिणामों को द्विया गथा है। X, Y तथा Z द्वारा प्रम्त मन्तो का प्रतिशत की दर्शाया गया है। कौन-सा द्रल चुनाव जीता?

सण्ड	भुल मतदाता	मतदान प्रतिशत	\mathbf{X}	Y	Z
A	$2,00,0,90$	60	30	30	40
B	$2,50,000$	70	40	30	30
C	$3,00,000$	80	30	40	30

I. Y
2. X
3. Z
4. X एवं Y में दरादरी हुई
20. Election results of a city, which coatains 3 segments (A, B and C) are given in the Table. Percentage votes obtained by parlies X, Y and Z are also stown. Which party won the election?

Segment	Totai Voters	$9 / 4$ voting	X	Y	Z
A	$2,00,000$	60	30	30	40
\mathbf{B}	$2,50,000$	70	40	30	30
\mathbf{C}	$3,00,000$	80	30	40	30

. Y
2. X
3. Z
4. It was a lie between X and Y

भाग/PART - B

Unit-1

21. निम्न समुष्चय पर फलन $\tan x$ लें $S=\{x \in \mathbb{R}: x \geq 0, x \neq k \pi+$ $\frac{\pi}{2}$, किती 却 $k \in \mathbb{N} \cup\{0\}$ के लिए।
s में इसका एक नियत बिंदु होगा यदि
$\exists x \in S$ ऐसे हो कि $\tan x=x$ हो। तब
22. एक अद्वितीक नियत बिंदु है
23. कोई निय्त बेंदु नकी हो सकतन
24. अंत्त बहुत नियत बिंदु है
25. एक स अधिक लेकिन परिमित स्थिर सिंदु है
26. Consider the function $\tan x$ on the set $S=\{x \in \mathbb{R}: x \geq 0, x \neq k \pi+$ $\frac{\pi}{2}$ for any $\left.k \in \mathbb{N} U\{0\}\right\}$.
We say that it has a fixed point in S if $\exists x \in S$ such that $\tan x=x$. Then
I. there is a unique fixed point
27. there is no fixed point
28. there are infinitely many fixed points
29. there are more than one but invitely many fixed points
30. यदि $x>0$ के लिए $f(x)=\frac{x}{\sqrt{x}}$ तो f निम्नानुतार एकसमननत: संतत है
31. $(0, \infty)$ पर
32. $[r, \infty)$ पर, सब $r>0$ के लिए
33. $\oint, r]$ पर, सब $r>0$ के लिए
34. केँल $[a, b]$ अंतरगल के बिए जक्षा

$$
0<a<b<\infty \text { हो }
$$

22. Define $f(x)=\frac{1}{\sqrt{x}}$ for $x>0$. Thent f is uniformly continuous
23. on $(0, \infty)$
24. on $[r, \infty)$ for anly $r>0$
25. on ($0, r$) for any $r>0$
26. onty en intervals of the form $[a, b]$ for $0<a<b<\infty$
27. \mathbb{R}^{3} की निम्नलिखित दो उपस्रिष्टियो W_{5} तथा W_{z} को इस प्रकार अभिष्यक्त किया जाता है $W_{1}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\}$ तो $W_{2}=\left\{(x, y, z) \in R^{3} ; x-y+z=0\right\}$. यदि W को g^{3} की इस तरह उपसमक्टि माने कि
(i) $w \cap W_{Z}=$ विस्तृसि $\{(0,1,1)\}$
(ii) अंतन युप्यक्षल \boldsymbol{R}^{3} के सापेक्ष $W\left(W_{1}\right.$ तथा $W \mathrm{CW}_{2}$ एक दूसरे के लंबकीषीय हीं तों
28. $W=$ बिस्तृति $\{(0,1,-1),(0,1,1)\}$
29. $w=$ विस्लृंति $((1,0,-1),(0,1,-1)\}$
30. $W=$ विस्तृति $\{(1,0,-1),(0,1,1)\}$
31. $W=$ विस्तृति $(\{1,0,-1),(1,0,1)\}$
32. Consider the subspaces W_{1} and W_{2} of \mathbb{R}^{3} given by

$$
W_{1}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\}
$$

$$
W_{2}=\left((x, y, z) \in \operatorname{Den}^{3} ; x-y+z=0\right)
$$

If W is a subspace of R^{3} such that
(i) $W \cap W_{2}=\operatorname{span}[(0,1,1))$
(ii) $W \cap W_{1}$ is crthogonal to $W \cap W_{2}$ with respect to the esuat inner producl of R^{3}, thets

1. $W=\operatorname{span}((0,1,-1),(0,1,1))$
2. $W=\operatorname{span}\{(1,0,-1),(0,1,-1)\}$
3. $W=\operatorname{span}\{(1,0,-1),(0,1,1))$
4. $W=\operatorname{span}\{(1,0,-1),(1,0,1)\}$
5. $C=\left[\binom{1}{2},\binom{2}{1}\right]$ को R^{z} का आधार साने तथा $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ को $T\binom{x}{y}=\binom{x+y}{x-2 y}$ से परिआओित कर्र। यदि C आधार के सापेक्षा T अं्युह को $T[C]$ से दिखाएं तो निम्न में से कौन सा बक्तम्य संत्य है?
6. $T|C|=\left[\begin{array}{cc}-3 & -2 \\ 3 & 1\end{array}\right]$
7. $T[C]=\left[\begin{array}{cc}3 & -2 \\ -3 & 1\end{array}\right]$
8. $T[C]=\left[\begin{array}{cc}-3 & -1 \\ 3 & 2\end{array}\right]$
9. $T[C]=\left[\begin{array}{cc}3 & -1 \\ -3 & 2\end{array}\right]$
10. Let $C=\left[\binom{1}{2},\binom{2}{1}\right]$ be a basis of \mathbb{R}^{2} and $T: \boldsymbol{F}^{2} \rightarrow \mathbb{R}^{2}$ b: defined by $T\binom{x}{y}=$ $\binom{x+y}{x-2 y}$. If $T[C]$ represents the matrix of T with respect to the basis C then which among the following is true?
11. $T[C]=\left[\begin{array}{cc}-3 & -2 \\ 3 & 1\end{array}\right]$
12. $T[C]=\left[\begin{array}{cc}3 & -2 \\ -3 & 1\end{array}\right]$
13. $r[C]=\left[\begin{array}{cc}-3 & -1 \\ 3 & 2\end{array}\right]$
14. $T[C]=\left[\begin{array}{cc}3 & -1 \\ -3 & 2\end{array}\right]$
15. यदि $w_{1}=\left[(u, v, w, x) \in \mathbb{R}^{x} \mid u+v+w=0\right.$. $2 v+x=0,2 u+2 w-x=0\}$ तथा
$w_{2}=\left\{\left.\left(u_{1}, v_{1}, w, x\right) \in \mathbf{E}^{4}\right|_{u}+w+x=0\right.$.
$u+w-z x=0, v-x=0)$, तो निम्न मे
से कौन सः कथल सत्म है?
16. $\operatorname{dim}\left(W_{1}\right)=1$
17. $\operatorname{dim}\left(W_{2}\right)=2$
18. $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=1$.
19. $\operatorname{dim}\left(W_{1}+W_{2}\right)=3$
20. Let $W_{1}=\left\{(u, v, u, x) \in \mathbb{R}^{+}\right\}_{u+v+}$ $w=0,2 v+x=0,2 u+2 w-x=0)$
and
$W_{2}=\left\{(u, v, w, x) \in \mathbf{R}^{4} \mid u+w+x=0\right.$,
$u+w-2 x=0, v-x=0$). Thern
which among the followisg is true?
f. $\operatorname{dim}\left(W_{1}\right)=1$
21. $\operatorname{dim}\left(W_{2}\right)=2$
22. $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=1$
23. $\operatorname{dim}\left(W_{1}+W_{2}\right)=3$
24. मानिए कि A एक $\pi \times n$ मस्मिश आद्यूह है। A को स्वसलन्न और B को $A+U_{n}$ का प्रतिलोम माले लो $\left(A-U_{n}\right) B$ के सरी अंमिनक्षणगिक मान हैं
25. पूर्णन्त: ऑधिकल्यित्र
26. मापांक एक के
27. वस्त्तदिक
28. एक से कम मापांक के
29. Let A be an $n \times n$ complex matrix. Assume that A is self-adijoint and tet B derote the inverse of $A+i I_{n}$. Then all oigenvalucs of $\left(A-U_{n}\right) B$ are
30. purely inaginary
31. of modulus one
32. real
33. of modulus less than one
34. स्तंभ सदिश C^{n} के लिए $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ प्रसामान्य लांचिक अधार मान ले $M=$ $\left(u_{1}, \ldots, u_{k}\right), N=\left(u_{k+1}, \ldots, u_{n}\right)$ लथा P एक विकर्ण $k \times k$ आव्यूह हो जिएम $a_{1}, a_{2}, \ldots, a_{k} \in R$ बिकत्णी पीविध्टियां हो तो निन्न में से कौन-सा कथल सही है?
35. संक (MPM $)=k$ जब की $a_{i} \neq a_{j}$ $1 \leq i, j \leq k$.
36. ट्रेस $\left(\right.$ MPM $\left.^{*}\right)=\sum_{i=1}^{k} a_{i}$
37. $\tilde{\tau}^{2}\left(M^{*} N\right)=\min (k, n-k)$
38. ₹क $(M N+N N)<n$
39. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an oritonormat basis of \mathbb{C}^{n} as colamno vectors, Let $M=\left(u_{1}, \ldots, u_{k}\right), N=\left(u_{k+1}, \ldots, u_{n}\right)$ and P be the diagonal $k \times k$ matrix with diagonal extries $a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{R}$. Then which of the following is true?
40. Rank (MPM*) $=k$ whenever $a_{i} \neq a_{j} 1 \leq i j \leq k$.
41. $\operatorname{Trace}\left(\right.$ MPM $\left.^{*}\right)=\sum_{t=1}^{k} a_{i}$
42. $\operatorname{Rank}\left(\mathcal{M}^{+} N\right)=\min (k, n-k)$
43. Rank ($M M^{*}+N N^{*}$) $<\pi$
44. यदि $B: R \times \mathbb{R} \rightarrow \mathbb{R}$ को फलन $B(a, b)=a b$ मान ले ते जिन्न ने से कौन-सा कथन सही है? 1. B रंखिक स्वातांरण है
45. B धनात्मक निश्चित द्विरेखिक रूप है
46. 8 सम्ममित है परंतु धन्नात्मक जिशिच नहाँ है 4. B न तो रैखिक है न द्विरखिक
47. Let $B: \mathbf{R}^{\circ} \times$ 路 \rightarrow be the function $B(a, b)=a b$.
Which of the foliowing is true?
48. B is a linear transformation
49. B is a positive definite bilinear form
50. B is symmetric but not positive definite
51. B is neither linear nor bilinear
52. निम्नानुसार परिभाबित प्रतिछचत्र $f: 4 \rightarrow R$ के लिए
(i) $f(0)=0$
 एवं $\mathrm{gcd}(p, q)=1$.
तथ प्रीिचित्र f है
53. onc-to-onc तथा onto
54. one-to-one नहल, परंतु onto
55. onto परंतु one-toone नही
56. ब तो one-to-mne, न onto
57. Consider the map $f: \rightarrow$ R defined by
(i) $f(0)=0$
(ii) $f(r)=\frac{p}{10}$ where $r=\frac{P}{a}$ with $p \in Z$,
$q \in \mathbb{N}$ and $\operatorname{gcd}(p, q)=1$.
Then the map f is
58. one-to-one and onto
59. nol one-to-one, but onto
60. onto but not one-to-one
61. aeither one-to-one nor onto
62. यदि x वार्तनिक्त संख्या हो जलकि $|x|<1$, तो लिम्न में से कौन सा गलत है?
63. यदि $x \in Q$, तब $\sum_{m \geq 0} x^{m} \in Q$
64. यदि $\sum_{m \geq 0} x^{m} \in Q$ तब $x \in Q$
65. यदि $x \notin$ तब $\sum_{N_{120}} m x^{m-1} \notin Q$
66. $\sum_{\max } \frac{x^{* W}}{m} \mathrm{a}$ मे अभिसारी है
67. Let \boldsymbol{x} be a real number such that $|x|<1$. Which of the following is FALSE?
68. If $x \in Q$, then $\sum_{m=0} x^{m} \in \mathbb{Q}$
69. If $\sum_{m \geq 0} x^{m} \in \operatorname{then} x \in \mathbb{Q}$
70. If $x \notin$ Q then $\sum_{i m=0} m x^{m-1} \notin Q$
71. $\sum_{i n \geq 1} \frac{x^{m}}{m}$ converges in \mathbb{R}
72. $\left\{x_{n}\right\}$ एक वास्तविक संख्याओ का अनुक्रम है। हर $\varepsilon>0$ के लिए ऐसम n_{0} है, जो इस बंच्यक को संतुष्ट करता है

$$
\left|x_{n+1}-x_{n}\right|<4 \vee n \geq n_{0}
$$

तो अनुक्रक $\left\{x_{\mathrm{n}}\right\}$ है

1. परिबद्ध परंतु आवश्यक नहीं कि कॉरी हो
2. कॉशी हो पंतु आयक्यक नहीं कि पतिजद्ध हो
3. अभिसारी
4. आवश्यक नर्ती कि परिकद्यु हैं
5. Suppose that $\left\{x_{n}\right\}$ is a soquence of real numbers satisfying the following. For every $\varepsilon>0$, there cxists n_{D} such that
$\left|x_{n+1}-x_{n}\right|<\varepsilon \forall n \geq n_{0}$.
The sequence $\left\{x_{n}\right\}$ is
6. bounded but fot necessarify Cauchy
7. Cauchy but not necessarily bounded
8. convergent
9. not necessarily bounded
10.

$A(n)=\int_{\pi}^{n+1} \frac{1}{x^{3}} d x$ जबकि $n \geq 1$.
$c \in R$ के लिए मान लें कि
$\lim _{n \rightarrow \infty} n^{c} A(n)=L$, तो

1. $L=0$ यदि $c>3$
2. $L=1$ यदि $c=3$
3. $L=2$ यदि $c=3$
4. $L=\infty$ यदे $0<c<3$
5.

Let $A(n)=\int_{n}^{n+1} \frac{1}{x^{3}} d x$ for $n \geq 1$.
For $c \in \mathbb{R}$ let $\lim _{n \rightarrow \infty} n^{c} A(n)=L$.
Then

1. $L=0$ if $c>3$
2. $L=1$ if $c=3$
3. $L=2$ if $c=3$
4. $L=\infty$ if $0<c<3$

Unit-2

33. सम्निमश्र चर z वाले बहुपद $p(z)$ तथा $q(z)$ हैं। मानें कि $f_{P Q}=q_{y} p(z) \overline{q(z)} d z$ जाहां Y बंद

34. $i_{x^{m}, z^{\pi}}=0$ सभी धनात्मक पूर्णांकों m, n के लिए जहां $m \neq n$
35. $f_{x^{\pi} z^{n}}=2 \pi i$ सरी धनात्मक पूर्णाको n के लिए
36. $f_{p, 1}=0$; सभी बहुपदो p के लिए
37. $f_{B A}=p(0)$ $\overline{q(0)}$ समी बहुपद्धों p, q के लिए
38. Consider the polynomsials $p(z), q(z)$ in the complex variable z and let
$/_{p, q}=\oint_{\gamma} p(\%) \overline{q(z)} d z$
where y denotes the ciosed contour
$\gamma(t)=e^{t t}, 0 \leq t \leq 2 \pi$. Then
39. $I_{z^{m} z^{n}}=0$ for all positive integers m, n with $m \neq n$
40. $I_{2^{n}, 2^{n}}=2$ ti for all positive integers n
41. $t_{p, 1}=0$ for all polynomials p
42. $l_{p . q}=p(0) \overline{q(0)}$ for all polynomiais p, q
43. मूल बिंदु को कैंद्र मान कर त्रिज्या 3 का धनात्मक अभिविन्यक्त दृत्त $\gamma(t)=3 e^{t t}, 0 \leq$ $t \leq 2 \pi$ है। λ के जिस मान के लिए समीकरण

$$
\oint_{v} \frac{\lambda}{z-2} d z=\oint_{\gamma} \frac{1}{z^{2}-5 z+4} d z
$$

हंतुष्ट होता है: वर है

1. $\lambda=-1 / 3$
2. $\lambda=0$
3. $\lambda=1 / 3$
4. $\lambda=1$
5. Let $\gamma(t)=3 e^{t t}, 0 \leq t \leq 2 \pi$ bc the positively oriented circia of radius 3 centred al the origin. The value of λ for which

$$
\oint_{\gamma} \frac{1}{z-2} d z=\oint_{\gamma} \frac{1}{z^{2}-5 z+4} d z
$$

is

1. $\lambda=-1 / 3$
2. $\lambda=0$
3. $\lambda=1 / 3$
4. $\lambda=1$
5. एक्षंतर समूह A_{5} एवं समतनित समूह S_{4} के मट्य समूह समस्प्नाओं की संख्या है:
1.1
6. 12
7. 6
8. The number of group homomorphismis from the alternating group A_{5} to the symmetric group S_{4} is:
9. I
10. 12
11. 20
12. 6
13. यदि $p \geq 23$ अमाज्य संख्या हो जहां $\frac{1}{p}$ का दर्गमक विस्त्तार (आधार 10) आवर्तकाल $p-1$ के साध अम्दर्ती हो
(अर्थत् $\frac{1}{n}=0 \cdot \overline{n_{2} a_{2} \ldots a_{p-1}}$) जहां सभी i के लिए $a_{1} \in\{0,1, \ldots, 5\}$. तथा किसी की m के बिए $\left.m_{1} 1 \leq m<p-1, \frac{1}{p} \neq 0 \cdot \overline{a_{1}} \overline{a_{2}} \ldots a_{m}\right)$.
 समूह हो तो निम्न में से क्या सी़ी है?
I. $10 \mathrm{E}(2 / p \mathbb{Z})$ की कोटि (order) $(p-1)$ का उचित क्वाजक है।
14. $10 \in(\mathbf{Z} / p z)^{-}$की कीटि (order) $\frac{(p-t)}{2}$ है।
15. अप्वयद $10 \in(\bar{Z} / p Z)$ समूह $(Z / p \mathbb{Z})^{\circ}$ का जनक है।
16. समूह $(\mathbb{Z} / p 2)^{+}$चक्रीय है लेकिल अवयव 10 इसका जनक बही हैं।
17. Let $p \geq 23$ be a prime number such that the decimal expansion (base 10) or $\frac{1}{p}$ is periodic with period $p-1$ (that is, $\left.\frac{1}{p}=0 \cdot \overline{a_{1}} a_{2} \cdots a_{p-1}\right)$ with
$a_{i} \in\{0,1, \ldots, 9]$ for all i and for any $m_{1} \perp \leq m<p-1, \frac{ \pm}{p} \neq 0 \cdot \overline{a_{1} a_{2} \ldots a_{m}}$.
Let $\left(\mathbb{Z} / p^{2}\right)^{*}$ denote the multiplicative grott of integers modulo p. Then which of the following is correct?
18. The order of $10 \in(\bar{E} / p z)^{*}$ is a proper divisor of $(p-1)$.
19. The order of $10 \in(\mathcal{Z} / p \mathbb{Z})^{*}$ is $\frac{(p-1)}{2}$.
20. The element $10 \in(\mathcal{Z} / p \mathbb{Z})$; is a generator of the group $(\mathbb{Z} / p \mathbb{Z})^{*}$.
21. The group $(\mathbb{Z} / p \bar{Z})^{*}$ is cyclic but net generated by the clement 10 .
22. पूर्णोक a तथा b के लिए $N_{a, b}$ धन्यात्मक पूर्णीकरो $k<100$ की संख्या इस तरह दिखाता है कि $k \equiv a(\bmod 9)$ तथा $k \geqslant 3(\bmod 11)$.
निम्न में से कौन सा करथज सही है?
23. $\mathrm{N}_{a, b}=1$ तभी प्रूणक्रों a तर्म b के लिए
24. पूर्पांक a तथा b हैं जो शर्ल $N_{a, b}>I$ को संतुष्ट करते हैं।
25. पूर्णांक a तथा b हैं जो शर्त $N_{\alpha, i}=0$ को संतुष्ट करते है।
26. पूर्णांक a लथा b है जो इत $N_{a, s}=0$ का. तथां पूर्णांक c तथा d हैं. ज़े शर्त $N_{c, A}>1$ को संतुक्ट करते हैं।
27. Given integers a and b, let $N_{a, b}$ denote the number of positive integers $k<100$ such that $k \equiv a(\bmod 9)$ and $k \equiv b(\bmod$ [1). Then which of the following statements is correct?
28. $N_{a, b}=1$ for all integers a and b.
29. There exist integers a and b satisfying $N_{a r b}>1$.
30. There exist integers a and b satisfying $N_{e, b}=0$.
31. Theye exist integers a and b satisfying $N_{a, b}=0$ and there exist integers c and d satisfying $N_{c, d}>$ 1.
32. X को सांस्थितिक समध्टि मरन्ने तथा. U को X का उधित सघन विवृत उपसमुच्चय मतन तो निम्न में से सही कथन को पहचानें:
33. यदि X संबद्ध है, तो U की संबद्ध है।
34. यदि x संहत है, तो v मी संकल है।
35. यदि $x y u$ संहत है, तो x संहत है।
36. यदि x संहल है, तो $x \backslash U$ संहत है।
37. Let X be a topological space and U be a proper dense open subset of X. Pick the correct statement from the following:
i. If X is commected then U is connected.
38. If X is compact then U is compect.
39. If X, U is compact then X is compact.
40. If X is compact, then $X \backslash V$ is compart.
41. यदि माने ते कि R घात श्रेणी

के अभिसरण की त्रिज्या दिखाता हैं, तो

1. $R>\theta$ तथा श्रेणी $[-R, R]$ पर अभिस्रिरत है
2. $R>0$ तथा श्रेणी $x=-R$ पर अविसरित है. परंतु $x=R$ पर आंक्रित्रित नहीं है
3. $R>0$ तथा ग्रेगी $(-F, R)$ के बाहर अभीसरित नही हौती
4. $R=0$.
5. Let R denote the radius of convergence of the power stries

$$
\sum_{k=1}^{\infty} k x^{k}
$$

Then

1. $R>0$ and the scries is canvergent on $[-R, R]$.
2. $R>0$ and the scries converges at $x=-R$ bet daes not converge st $x=R$.
3. $R>0$ and the series does not converge outside $(-R, R)$.
4. $R=0$.
5. $\mathrm{f}: \mathrm{C} \rightarrow \mathrm{C}$ एन अधरेलर सर्वत्र वैश्लेयिक फलन तथा
image $f(f)=\{w \in \subset: \exists z \in \mathbb{C}$ ऐस कि $f(z)=w\}$, ता
6. Image (f) का अंत: रिक्त्र है।
image (f) मूल बिंदु से आमे वाली हर रेखा को क्टता हैं।
7. सम्निश्र समतल में हसी चक्रिका है जो Iriage (f) से असंयुक्त है।
8. Image (f) मे इसकें सज सौमा बिंदु सन्नलित है।
9. Let $f: C \rightarrow C$ be a non-constant entire
function and let
image $(f)=\{w \in \mathbb{C}: \exists x \in \mathbb{C}$ such that $f(z)=w\}$.
Then
10. The interior of lmage (f) is tmpty.
11. Image (f) intervects every line passing through the origits.
12. There exists a dise in the complex plane, which is disjoint from Imaige (f)
13. (brage (f) contains all its limit points.

Usit-3

41. मान्ना कि $u(x, t)$ एक फलन है ओ कि PDE $u_{x x}-u_{t t}=e^{x}+6 t, x \in \mathrm{R}_{1} t>0$ तथा प्रारंगुक परिस्तियतियो $u(x, 0)=$ $\sin (x), u_{z}(x, 0)=0$ प्रत्येक $x \in R$ के दिए, को संतुष्ट्र करता है, जहां कि पादस्कर दर्शाये चर्रो के संगत अंशिक अवकलज छंगित करते है। तब $u\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ का मान है
42. $e^{\pi / 2}\left(1+\frac{1}{2} e^{x / 2}\right)+\left(\frac{x^{2}+4}{8}\right)$
43. $e^{\pi / 2}\left(1+\frac{1}{2} e^{\pi / 2}\right)+\left(\frac{x^{3}-4}{2}\right)$
44. $e^{\pi / 2}\left(1-\frac{1}{2} e^{\pi / 2}\right)-\left(\frac{\pi^{3}+4}{8}\right)$
45. $e^{\pi / 2}\left(1-\frac{1}{2} e^{\pi / 2}\right)-\left(\frac{n^{2}-\frac{4}{8}}{8}\right)$
46. Let $u(x, t)$ be a function that satisfies the PDE
$u_{x x}-u_{t r}=e^{x}+6 t, x \in x_{1}, t>0$ and the initial corditions
$u(x, 0)=\sin (x), u_{t}(x, 0)=0$
tor every $x \in R$.
Here subscripts dencte partial derivatives corresponding to the variables indicated. Then the value of $u\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
47. $e^{\pi / 2}\left(1+\frac{1}{2} e^{\pi / 2}\right)+\left(\frac{r^{3}+4}{8}\right)$
48. $e^{n / 2}\left(1+\frac{1}{\frac{1}{2}} e^{\pi / 2}\right)+\left(\frac{\pi^{3}-4}{8}\right)$
49. $e^{\pi / 2}\left(1-\frac{1}{2} e^{\pi / 2}\right)-\left(\frac{n^{3}+4}{9}\right)$
50. $e^{\pi / 2}\left(1-\frac{1}{2} e^{\pi / 2}\right)-\left(\frac{\pi^{3}-4}{B}\right)$
51. माना कि $u(x, i)$ निम्न IVP कर संतुष्ट करता है:
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial y^{2}}, \quad x \in \mathrm{R}, c>0$
$u(x, 0)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { अन्यन्त }\end{cases}$
तब $\lim _{t \rightarrow 0+} u(1, t)$ का मान है
52. e
53. $\#$
54. $1 / 2$
55. 1
56. Leit $u(x, t)$ satisfy the TVP:
$\frac{\Delta u}{\partial c}=\frac{\partial^{2} x}{\Delta x^{2}}, x \in \mathbf{R}, t>0$
$u(x, 0)=\left(\begin{array}{ll}1, & 0 \leq x \leq 1 \\ 0, & \text { elsewhere. }\end{array}\right.$

Fiven the value of $\lim _{t \rightarrow 0+} u(1, t)$ equals

1. e
2. n
3. $1 / 2$
4. 1
5. माना 龟 $f(x)$ एक अज्ञात घात (डियों) का बतुप्य है जिसका मान दी गई कारिणी के अनुसार है

x	0	1	2	3
$f(x)$	2	7	13	16

इसके तमाभ चौथ विक्रीजित अंलर्रों का मान $-1 / 6$ है। तब x^{3} का गुणांक है
1, 1/3
2. $-2 / 3$
3. 16
4. -1
43. L.ct $f(x)$ be a polynomial of vaknown degree taking the values

All the fourth divided differences are $-1 / 6$. Then the eqeeficient of x^{3} is

1. $1 / 3$
2. $-2 / 3$
3. 16
4. -1
5. द्विचार कीजिए पह्लनक
$J[y]=\int_{0}^{2}\left(1-y^{2}\right)^{2} d x$
जा $\left\{y e C[0,2]: y\right.$ टुकडेवार C^{1} तथा $y(6)=y(2)=0\}$ पर परिभीषित है। मान तीजिये कि y_{e} उपर्युक्त फलनक का न्यूलतमकर्ता है तो y_{π} के पास है
I. एक अनन्म कोना बिंदु (comer point)
6. दो कोना बिंदु (conser point)
7. दो से अधिक कोना बिंदु (comer point)
8. कोई भी फोना बिंदु (comer point) नही
9. Consider the functional
$\Delta y\}=\int_{0}^{2}\left(1-y^{\prime 2}\right)^{2} d x$
defined on $\left\{y \in C[0,2]: y\right.$ is piecewise C^{2} and $y(0)=y(2)=0)$. Let y_{e} be a minimizer of the above functional. Theo y_{5} has
10. a unique corner point
11. two corner points
12. more than two comer points
13. no corner paints
14. यदि

$$
\int_{0}^{x}\left(1-x^{2}+t^{2}\right) \varphi(t) d t=\frac{x^{2}}{2}
$$

का हल φ है तो, $\varphi(\sqrt{2})$ का मान है

1. $\sqrt{2} e^{\sqrt{2}}$
2. $\sqrt{2} e^{3}$
3. $\sqrt{2} e^{2 \sqrt{2}}$
4. $2 e^{4}$
5. If φ is the solution of
$\int_{0}^{x}\left(1-x^{2}+t^{2}\right) \varphi(t) d t=\frac{x^{2}}{2}$,
then $\varphi(\sqrt{2})$ is cqual to
6. $\sqrt{2} e^{\sqrt{2}}$
7. $\sqrt{2} e^{2}$
8. $\sqrt{2} e^{2 \sqrt{2}}$
9. $2 e^{4}$
10. एक्क स्त्रिंग के किज्नारे से जुडे द्रच्यमान m की द्विआयामी गति पर विचार करे, जिसका दूसरा सित्र स्थिर है। मान लीजिए कि स्प्रिंग स्थिरांक का मान k है। इस तंत्र की मान्तिक ऊर्जा T व स्थितिज ऊर्जा V निम्न समीकरणों से दी गई है
$T=\frac{1}{2} m m^{\prime}\left(r^{2}+(r \dot{\theta})^{2}\right)$ तमा $V=\frac{1}{2} k r^{2}$, जहं। पर $\dot{r}=\frac{d r}{d t}$ सथा $\dot{\theta}=\frac{d \theta}{d t}$ तथा t समय दर्शाता है। तब निम्नलिखित मै कौन-सा कथन महु है?
11. r एक निरसमीय निर्देशांक है
12. θ एक निरसनीय हनर्देशांक तब्री है
13. संपूर्ण गति के दौरान $r^{2} \dot{\theta}$ का मान नियत इहला है
14. संपूर्ण बाति के दौरान r की का मान नियत रहला है
15. Consider the two dimensional motion of a ruass m attached to one end of a spring whose other end is fixed. Let k be the spring constant. The kinetic energy T and the potential energy V of the system are given by
$T=\frac{1}{2} m\left(\dot{r}^{2}+(r \dot{\theta})^{2}\right)$ and $V=\frac{1}{2} k r^{2}$,
wherc $\dot{r}=\frac{d x}{d t}$ and $\dot{\theta}=\frac{d \theta}{d t}$ with t as time.
Then which of fre following statements is correct?
T. r is an ignorable coordinate
16. θ is not an ignorable coordinate
17. $r^{2} \dot{\theta}$ remains constant throughout the motion
18. ref remains constant throughout the motion
19. यदि अस्रकल समीकरण
$(\cos x) y^{\prime \prime}+(\sin x) y^{4}-\left(1+e^{-x^{2}}\right) y=$ $0 \forall x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
के दो क्ल $y_{1}(x)$ तथा $y_{2}(x)$ है जिसमें
$y_{1}(0)=\sqrt{2}, y_{i}^{\prime}(0)=1_{1} y_{2}(0)=$
$-\sqrt{2} . y_{2}^{\prime}(0)=2$.
तो $x=\frac{\pi}{4}$ पर $y_{2}(x)$ तथा $y_{2}(x)$ का रोंस्क्भियन है
20. $3 \sqrt{2}$
21. 6
22. 3
23. $-3 \sqrt{2}$
24. If $y_{1}(x)$ and $y_{2}(x)$ are two solutions of the differential equation
$(\cos x) y^{\prime+}+(\sin x) y^{\prime}-\left(1+e^{-x^{2}}\right) y=$ $0 \forall x \in\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$
with $y_{2}(0)=\sqrt{2} y_{1}^{\prime}(0)=1, y_{2}(0)=$
$-\sqrt{2}, y_{2}^{\prime}(0)=2$.
then the Wronskian of $y_{1}(x)$ and $y_{2}(x)$ at $x=\frac{\pi}{4}$ is
25. $3 \sqrt{2}$
26. 6
27. 3
28. $-3 \sqrt{2}$
29. दिये गये लंत्य
$x^{\prime}(c)=x-2 y+y^{2} \sin (x)$
$y^{\prime}(t)=2 x-2 y-3 y \cos \left(y^{2}\right)$
का क्रांतिक बिंदु $(0,0)$ है,
30. स्थिर सर्मिल बिंदु
31. अस्थिर समिल बिंदु
32. पर्याण बिंदु
33. स्त्थि आसंगध
34. The critical point $(0,0)$ for the system

$$
x^{\prime}(t)=x-2 y+y^{2} \sin (x)
$$

$$
y^{\prime}(\ell)=2 x-2 y-3 y \cos \left(y^{2}\right)
$$

is a
I. stable spiral point
2. unstable spiral point
3. saddle point
4. stable node

Unit-4

49. पर्भक्षण प्रतिवर्शऊ T का उपयोग करके परिकस्पन्तार्ं H_{0} का H_{1} के विरुद्य परीक्षण करने में प्रस्ताविल परीक्षण पदर्यति H_{0} का सम्रर्थन नहीं करती है यदि T का मान अधिक है। दिए उए प्रलिदर्श (sample) के आधार पर परीक्षग्र पतिदर्झज का p मान 0.05 प्राप्त होता यदि यदि माना जाये कि T का H_{0} के अधन बंटन $\mathrm{N}(0,1)$ है। H_{0} के अंचीन T का बंटन्न यदि 10 स्त्यतंत्र्य कोटि के साय t बंटन हो तो, p-मान्न होगा
50. 0.05
51. $<0.05-\frac{1}{100}$
52. $0.05-\frac{1}{100}$
53. >0.05
54. To test the hypotheses H_{0} against H_{4} using the tost statistic T, the proposed test procedure is not to support H_{0} if T is large. Based on a given sample, the pvalue of the test statistic is computed to be 0.05 assuming that the distribution of T is $N(0,1)$ under H_{G}. If the distribution of T under H_{0} is the t-distribution with 10 degrees of freedom instead, the p-value will be
I. 0.05
55. $<0.05-\frac{1}{100}$
56. $0.05-\frac{1}{100}^{100}$
57. >0.05
58. माजा कि $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ किसी द्विचर संतत संटन के n स्वतंत्र प्रेक्षण है। इन n प्रेक्षण के आधार पर मानें कि x_{p} गुणन्नक्षल

आ़ाूर्प सहसंबंध गुणांक तथा r_{r} रक सहसंबंध तुपांक है। निम्न में से कौन सा कधन सही है?

1. $x_{p} \geq 0$ का तात्पर्य है $r_{s} \geq 0$
2. $r_{s} \geq 0$ का लात्पर्य है $r_{p} \geq 0$
3. $r_{p}=1$ का तास्पर्य है $r_{s}=1$
4. $r_{s}=1$ का तात्पर्य है $r_{p}=1$
5. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ be n independent observations from a bivariate continuous distribution. Let r_{p} be the product moment correlation coefficient and r_{s} be the rank correlation coefficient computed based on these n observations. Which of the following statements is correct?
i. $r_{y} \geq 0$ implies $r_{5} \geq 0$
6. $r_{s} \geq 0$ implies $r_{F} \geq 0$
7. $r_{\pi}=1$ imples $r_{4}=1$
8. $r_{s}=1$ implies $r_{p}=1$
9. किसी रेखीय मॉडल $Y_{1}=\theta_{1}+\theta_{2}+$
ε_{t} (जबक्कि $I=1,2$) तथा $Y_{i}=\theta_{1}-\theta_{3}+$
ε_{1} (जख्यकि $i=3,4$) पर विच्चार कीजिये जहां
कि तमाम $E_{i}^{\prime} s$ स्वतंत्र हैं तथा $i=1, \ldots, 4$
के लिए $\mathbb{E}\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{j}\right)=0^{2}>0$ तथा
$\theta_{1}, \ldots \theta_{s} \in \mathbb{R}$. निन्न में से कौन सा प्राचलीय फलन आकलनीय है?
10. $\theta_{1}+\theta_{3}$
11. $\theta_{2}-\theta_{3}$
12. $\theta_{2}+\theta_{3}$
13. $\theta_{1}+\theta_{2}+\theta_{3}$
14. Consider a linear model

$$
\begin{aligned}
& Y_{i}=\theta_{1}+\theta_{2}+\varepsilon_{i} \text { for } t=1,2 \text { and } \\
& Y_{i}=\theta_{1}-\theta_{3}+\varepsilon_{i} \text { for } l=3,4 \text {, where }
\end{aligned}
$$

$$
\varepsilon_{i}^{\prime} \text { 's are independent with } E\left(\varepsilon_{\xi}\right)=0
$$

$\operatorname{Var}\left(\varepsilon_{\ell}\right)=\sigma^{2}>0$ for $i=1, \ldots, 4$, and $\theta_{2}, \ldots \theta_{3} \in \mathbb{R}$. Which of the following
parametric functions is estimable?
i. $\theta_{1}+\theta_{3}$
2. $\theta_{2}-\theta_{3}$
3. $\theta_{2}+\theta_{3}$
4. $\theta_{1}+\theta_{2}+\theta_{3}$
52. यदि $X \sim N_{p}(0,0)$ तथा $A_{p \times p}$ एक वर्गसम आव्यूह है जिसकी रक $(A)=k<p$ है, तो निम्नलिखित में से कौन सा कथन हही है:

1. $\frac{x^{\prime} A X}{x^{\prime} x} \sim \frac{k}{p} F_{k, D}$
2. $\frac{r^{\prime} A X}{x^{\prime} \pi} \sim \frac{k}{p-k} F_{k p-k}$
3. $\frac{\pi^{\prime} \lambda x}{x^{\prime} x}-\operatorname{Seta}\left(\frac{k}{x}, \frac{p}{2}\right)$
4. $\frac{x^{\prime} A x}{x^{\prime} x}-\operatorname{Beta}\left(\frac{k}{2}, \frac{p-k}{z}\right)$
5. If $X \sim N_{p}(0,1)$ and $A_{p \times p}$ is an idempotent matrix with rank $(A)=k<p$, then which of the following stacments is $\Rightarrow 206$
$\therefore \frac{x_{n}-\bar{x}}{n}-\frac{k}{p} F_{k p}$
6. $\boldsymbol{z}^{\prime} \hat{\boldsymbol{x}^{\prime}-\boldsymbol{x}} \boldsymbol{x}-\frac{k}{p-k} F_{k, p-k}$
7. $\frac{\pi^{\prime} \wedge \frac{g}{x^{\prime} x}}{\boldsymbol{x}^{\prime} \lambda}-\operatorname{Beta}\left(\frac{k}{2}, \frac{p}{2}\right)$
8. $\frac{x^{\prime} A \pi}{x^{\prime} x} \sim B e t a\left(\frac{k}{2} \cdot \frac{y-k}{z}\right)$
9. PPSWR प्रतिदर्श स्कीम का उपयोग करके $N(\geq 3)$ की समध्ट में से एक $n\{\geq 2\}$ अानकार क् एक थ्रतिदे (नमूना) लिया ज्ञाता है, जहां合 I^{L} इकाई को एक ड्रॉ मे पसल करते की प्रासिकता P_{i} है, $0<p_{i}<1 \forall i=$ $1_{1} \ldots, N$, तथा $\sum_{i=1}^{n} p_{i}=1$.
तब समानेशन प्रायिक्ता π_{H} है
10. $1-p_{i}^{n}-p_{j}^{j}+\left(p_{i}+p_{i}\right)^{n}$
11. $1-\left(p_{i}+p_{j}-p_{i} p_{j}\right)^{\pi}$
12. $1-\left(1-p_{i}\right)^{n} \cdot\left(1-p_{j}\right)^{n}-\left(p_{i}+p_{j}\right)^{n}$
13. $1-\left(1-p_{i}\right)^{\text {th }}-\left(1-p_{j}\right)^{n}+\left(1-p_{f}-p_{i}\right)^{n}$
14. A sample of size $n(\geq 2)$ is drawn from a population of $N(\geq 3)$ units utsing PPSWR satripling scheane, where ν_{i} is the probability of sefecinting $i^{t / 4}$ unit in a draw, $0<p_{i}<1 \forall t=1, \ldots, N$, and $\sum_{i=1}^{N} p_{2}=1$.
Then the inclusion probability $\pi_{l j}$ is
15. $1-p_{i}^{n}-p_{j}^{n}+\left(p_{i}+p_{j}\right)^{n}$
16. $1-\left(p_{i}+p_{j}-p_{i} \bar{F}_{j}\right)^{n}$
17. $1-\left(1-p_{i}\right)^{n}-\left(1-p_{j}\right)^{n}-\left(p_{i}+p_{j}\right)^{n}$
18. $1-\left(1-p_{i}\right)^{n}-\left(1-p_{i}\right)^{n}+\left(1-p_{1}-p_{i}\right)^{n}$
19. किसी 2^{4} प्रयोग में दो ब्लॉक च सैक्टर A, B, C तथा D 米, किसी एक ल्लॉक म न निम्नलिखित उपचार सुग्स है
$a, b, c, a d, b d, c d, a b c, a b c d$.
निम्नलिखित में से कौन सा प्रमाव सांकरित है?
20. $A B C$
21. $A B D$
22. $B C D$
23. $A B C D$
24. In a 2^{4} experiment with two blocks and factors A, B, C and D, une hlock contains the farbowing trealmant swiminations $a, b, c, a d, b d, c d, a b c, a b c i$, , Which of the foltowing effects is confurneed?
25. $A B C$
26. $A B D$
27. $B C D$
28. $A B C D$
29. किसी हवाई अइ़ पर देशी और अन्तर खाष्ट्रीय यत्री प्वासी प्रक्रभानुसार क्रमेश: (140) नथा 70 प्रति घंटे की दर से स्वतंश रुप से आन्ते है। यदि किसी दिन सुवह के 9,00 से सुबह $11: 00$ बजे के बीच उस हवाई अहुड़े पर आलन घाले यात्रियों (देशी और दिदेशी) को कुल संख्या 520 है. तो इस अवधि में आने बाले देशी यतिशः की संख्या का सप्रत्तिबंध बंटन (conditional distribution) क्या है?

30. Peossion (100)
31. Astembial ($520, \frac{17}{17}$)
32. Binomina $\left(520, \frac{7}{37}\right)$
33. In an airpert, domestic passengers and internationai passengers artive independently according to Poisson processer with rates 100 and 70 pes hour, respectively. If it is given that the total number of passengers (domestic and interational) arriving in that airport between 9:00 AM and II:00 AM on a paoticutar day was 520 , then what is the conditional distribution of the number of domestic passengers arriving in this period?
34. Poisson (200)
35. Poisson (100)
36. Binamial $\left(520, \frac{10}{17}\right)$
37. Binomíal (520, $\frac{7}{17}$)
38. साना कि $X \geq 0(\Omega, \mathcal{F}, P)$ पर एक यादृध्रिक चर है जिसके लिए $\mathrm{E}(X)= \pm$ है। माना कि $A \in \mathcal{F}$ एक घटना है अिसके लिए $0<P(A)<1$. ऐसे में (Ω, F) के लिए निक्न में से कौन सा एक अम्य प्रायिकता माप को परिभनषित करता है?
i. $Q(B)=P(A \cap B) \quad \forall B \in \mathcal{F}$
39. $Q(B)=P(A \cup B) \quad \forall B \in \mathcal{F}$
40. $Q(B)=\mathbb{E}\left\{X I_{s}\right\}$
$\forall B \in F$
41. $Q(B)= \begin{cases}P(A \mid B) & \text { if } P(B)>0 \\ 0 & \text { if } P(B)=0\end{cases}$
42. Let $X \geq 0$ be a random variable an (Ω, F, P) with $E(X)=1$. Let $A \in F$ be an cvent wilh $0<P(A)<1$. Which of the following detines another probability measiare on ($\mathbf{5}, 7$) ?
43. $Q(B)=P(A \cap B) \quad \forall B \in \mathcal{F}$
44. $Q(B)=P(A \cup B) \quad \forall B \in \mathcal{F}$
45. $Q(B)=\mathbb{E}\left(X I_{B}\right) \quad \forall B \in \mathcal{F}$
46. $Q(B)= \begin{cases}P(A \mid B) & \text { if } P(B)>0 \\ 0 & \text { if } P(B)=0\end{cases}$
 जो किं $(0,4)$ पर सम्नन रूप से बंडित है। तब $P(X>Y \mid X<2 Y)$ 券
47. $\frac{1}{3}$
48. $\frac{5}{6}$
49. $\frac{2}{4}$
50. $\frac{2}{3}$
51. Let X and Y be i. t, d randern variables uniformly distribuled on (0,4). Ther $P(X>Y \mid X<2 Y)$ is
i. $\frac{1}{3}$
52. $\frac{5}{6}$
53. $\frac{1}{4}$
54. $\frac{2}{3}$
55. माना कि $\left\{X_{n}\right\}$ एक माकोंद चेल है जिसकी 3 अस्तस्थार्यें है तथा जिसका संक्रमण प्रायिकता आव्यूह (मैट्रिक्स)
$\left(\begin{array}{ccc}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$

है। तथ निम्न में से कौन सा कथन सत्य है? 1. $\left\{X_{n}\right\}$ अखंडनीय है।
2. $\left\{X_{n}\right\}$ पुनारावर्ती है।
3. $\left\{X_{\pi}\right\}$ एक स्थिर प्रायिकता इंटन की अनुमति नर्हीं देता है।
4. $\left\{X_{n}\right\}$ की एक अवश्शीयीय अवस्था है।
58. Suppose $\left\{X_{n}\right\}$ is a Markov Chain with 3 states and transition probabílity pastrix
$\left(\begin{array}{ccc}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$.
Then which of the following statements is true?

1. $\left\{X_{n}\right\}$ is irreducible
2. $\left\{X_{n}\right\}$ is recurtent
3. $\left\{X_{n}\right\}$ does mot admit a stationary probrability distribution
4. $\left\{X_{i}\right\}$ bas an absorbing state
5. मान्ता कि $x \sim$ Cauchy $(0,1)$, तब $\frac{1-x}{1+x}$ का बंटन है
6. Uniform $(0,1)$
7. Normal (0,1)
8. दी्विय्यातांकी $(0,1)$
9. Cauchy $(0,1)$
10. Suppose X - Caurthy $(0,1)$. Then the distribution of $\frac{1-X}{1+Y}$ is
11. Uniform ($0, I$)
12. Normal $(1,1)$
13. Double exponential $(0,1)$
14. Caachy $(0,1)$
15. प्रेक्षप्म $0.8,0.71,0.9,1.2,1.58,1.4 .0 .88 .1 .62$ दिए गए हैं जो कि समान बंटल $(\theta-0.2, \theta+$ 0. .ब तथा $-\infty<\theta<\infty$ पर प्राप्त की गई हैं। θ के लिए निम्न में से कौन सा सर्वाधिक संभावित आकलन है?
16. 0.7
17. 0.9
18. 1.1
19. 1.3
20. Given the observations $0.8,0.71,0.9,1.2$, $1.68,1.4,0.88$, 1.62 from the uniform distribution on ($\beta-0.2, \theta+0.8$) with $-\infty<\theta<\infty$, which of the following is a maximum likelihood estimate for θ ?
J. 0.7
21. 0.9
22. 1.1
23. 1.3

भाग／PART－C

Unit－1

61．माने कि $f: \mathbb{R}^{2} \rightarrow \mathbf{R}^{2}$ एक फलन है जो
$f(x, y)=\left(x^{3}+3 x y^{2}-15 x-12 y, x+y\right)$
की तरह लिखा जाता है। यदि $S=\{(x, y) \in$
$\mathbb{R}^{2}: f$ स्थानत：व्युत्त्रम्णीय हो (x, y) पर $\}$ ，तो
1．$S=R^{2} \backslash\{(0,0)\}$
2．S, Xx^{2} में बिद्वुत है
3． $5, \mathbb{R}^{2}$ \＆समन है
4． $\mathbb{R}_{2}^{2} \backslash S$ गणनीय है

61．Let $f: \mathbb{x R}^{2} \rightarrow \mathbb{R}^{2}$ be a function given by $f(x, y)=\left(x^{3}+3 x y^{2}-15 x-12 y, x+\right.$ $y)$ ．Let $S=\left\{(x, y) \in\right.$ 股 $^{2}: f$ is tocally invertible at (x, y) ．Then
1．$S=$ 服 $\left.^{2} \backslash(0,0)\right\}$
2．S is open in T^{2}
3．S is dense in 叓 2
4． $\boldsymbol{R}^{2} \backslash 5$ is countable
62．$X=N$ ，जननान्मक पूर्णार्को का समुच्चय मानें। X पर metrics d_{1}, d_{2} पर विद्यार कर्म，जाहां $d_{1}(m, n)=|m-n|, m, n \in X$ $d_{2}(m, n)=\left\{\left.\frac{1}{m}-\frac{1}{n} \right\rvert\,, m, n \in X\right.$ यदि X_{1}, X_{2} क्रमशः द्रीक समष्टि $\left(X, d_{1}\right),\left(X, d_{3}\right)$ के प्रतीक हो，तो
1．X_{1} पूर्ण है
2．x_{2} पूर्ण है
7．X_{1} संपूर्पातया परिक्द्ध है
4．X_{2} संपूर्णततया परिबद्ध है
62．Let $X=\mathbb{N}$ ，the set of positive integers．
Consider the metrics d_{1}, d_{2} on X given by $d_{1}(m, n)=|m-n|, m, n \in X$
$d_{2}(m, n)=\left|\frac{1}{m}-\frac{1}{n}\right|, m, n \in X$
Let X_{1}, X_{2} denote the metric spaces
$\left(X, d_{1}\right),\left(X, d_{2}\right)$ respectively．Then
1．X_{1} is complete
2．X_{2} is complete
3．X_{1} is totally bounded
4．X_{2} is totally bounded

63．$T:$ 『® $^{*} \rightarrow \mathbb{R}^{n}$ को ऐसा रैखिक प्रतिचित्र मानें जो़े $T^{2}=T-I_{n}$ को संतुष्ट करें तब निम्न में से कौन से कृथन सत्य है？
1．T व्युत्क्रमणीय है
2．$T-I_{n}$ व्युत्क्रूमणीय नही है
3．T का वास्त्तविक अभिलक्षणिक मान है
4．$T^{3}=-I_{n}$
63．Let $T: \mathbb{R}^{n} \rightarrow$ E n be a linear map that satisties $T^{2}=T-I_{n}$ ．Then which of the following are true？
1．T is invertible
2．$T-l_{n}$ is not invertible
3．T has a real eigen value
4．$T^{3}=-i_{n}$
64．$M=\left[\begin{array}{cccccc}2 & 0 & 3 & 2 & 0 & -2 \\ 0 & 1 & 0 & -1 & 3 & 4 \\ 0 & 0 & 1 & 0 & 4 & 4 \\ 1 & 1 & 1 & 0 & 1 & 1\end{array}\right]$ ．
$b_{1}=\left[\begin{array}{l}5 \\ 1 \\ 1 \\ 4\end{array}\right]$ तथा $b_{2}=\left[\begin{array}{l}5 \\ 1 \\ 3 \\ 3\end{array}\right]$ माने।
तब निम्न मे से कौन से कथन सत्य हैं
1．दोनो तंत्र $M X=b_{1}$ तथा $M X=b_{2}$ असंयत है
2．दोलो तंत्र $M X=b_{1}$ and $M X=b_{2}$ संगत है．
3．जंत्र $M X=b_{1}-b_{2}$ संगत है
4．तंत्र $M X=b_{2}-b_{2}$ असंगत है

64．$L e t M=\left[\begin{array}{cccccc}2 & 0 & 3 & 2 & 0 & -2 \\ 0 & 1 & 0 & -1 & 3 & 4 \\ 0 & 0 & 1 & 0 & 4 & 4 \\ 1 & 1 & 1 & 0 & 1 & 1\end{array}\right]$ ， $b_{1}=\left[\begin{array}{l}5 \\ 1 \\ 1 \\ 4\end{array}\right]$ and $b_{2}=\left[\begin{array}{l}5 \\ 1 \\ 3 \\ 3\end{array}\right]$ ．Then which of the
following are true？
1．both systems $M X=b_{1}$ and $M X=b_{2}$ are inconsistent
2．both systems $M X=b_{1}$ and $M X=b_{2}$ are consistent
3．the system $M X=b_{2}-b_{2}$ is consistent
4．the systems $M X=b_{1}-b_{2}$ is inconsistent
65. $M=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & 4 \\ -2 & 1 & -4\end{array}\right]$ मान्ना यदि द्विया है कि M का एक अभिलक्षाणिक मान 1 है तो निम्न में से कौन से कथन सत्य है?

1. M का अन्पिष्ठ बहुपद $(X-1)(x+4)$ है
2. M का अल्पिष्ठ बहुपद $(X-1)^{2}(X+4)$ है
3. M दिक्रान्नीय (diagoralizable) जहीं है
4. $M^{-1}=\frac{1}{4}(M+3 I)$
5. Let $M=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & 4 \\ -2 & 1 & -4\end{array}\right]$. Given that 1 is an eigenvalue of M, then which andong the following are correct?
6. The minimal polynomial of M is $(X-1)(x+4)$
7. The minimal polynomial of M is $(X-1)^{2}(X+4)$
8. M is not diagonalizahle
9. $M^{-1}=\frac{1}{4}(M+3 I)$
10. यदि A वास्तीविक आव्यूह हो जिसका

अभिलक्षणिक बहुपद $(X-1)^{3}$ हो तो निम्न में स सत्य कथन खंटिए

1. A आवश्यकत: निकर्गनीय है
2. यदि A का अल्मिण्ठ बहुपद $(R-1)^{3}$ हो तो A दिकर्णनीय है
3. A^{2} का अभिल्लक्षणिक्म बहुपद $(x-1)^{3}$ है
4. यदि A के केवल दो जॉर्दे ब ब्लाक हो तो $(A-1)^{2}$ विकरणनीय है
5. Let A be a real matrix with characteristic potynomial $(X-1)^{3}$. Pick the correct Statements from below:
6. A is necessarily diagonalizable
7. If the minimal polynomjal of A is $(x-1)^{3}$, then A is diagonalizable
8. Characteristic polynomial of A^{2} is $(x-1)^{3}$
9. If A has exactly two Jordan blocks, then $(A-1)^{2}$ is diagonalizable
10. मानै कि P_{3} अभिकतम 3 घात्तांक तथा वास्तविक्र छुणाकों वाले बहुपदों की सदिश सम底 है। $T(p(x))=p(x+1)+p(x-1))$ से परिभाषित संखिक प्रतिचित्र $7: P_{3} \rightarrow P_{3}$ पर विदार करे। P_{3} के मानक आधार $B=$ $\left\{1, x, x^{2}, x^{3}\right\}$ के संबंध में आध्यूह T निम्न 㶽 किलन गुर्णों को संतुष्ट करती है?
1, $\operatorname{det} T=0$
11. $(T-2 I)^{2}=0$ लेकिन $(T-2 I)^{2} \neq 0$
12. $(T-2 l)^{3}=0$ लेकिन $(T-2 l)^{2} \neq 0$
13. 2 बहुकता 4 का अभिनक्ष्षणिक मान है
14. Let P_{3} be the vector space of polynomials with real coefficients and of degree at most 3. Consider the linear map $T: P_{3} \rightarrow P_{3}$ deftined by

$$
T(p(x))=p(x+1)+p(x-1))
$$

Which of the following properties does the matrix of T (with respect to the standard basis $B=\left\{1, x_{2} x^{2}, x^{3}\right\}$ of $\left.p_{3}\right)$ satisfy?

1. $\operatorname{det} T=0$
2. $(T-2 J)^{4}=0$ but $(T-2 I)^{3} \neq 0$
3. $(T-2 I)^{9}=0$ but $(T-2 I)^{2} \neq 0$
4. 2 is an eigenvalue with multiplicity 4
5. साने कि M एक $n \times n$ हुर्मिती आव्यूह है जिसकी कोटि (rank) $k, k \neq n$ है। यदि $\lambda \neq 0 M$ का एक अभिलक्षणिक मान हो, एकक स्तंभ सद्दिश u के संगत $M u=\lambda u$ हो, तो निम्न में से कौन से कथन सत्य हैं?
6. $\operatorname{rark}\left(M-\lambda z L^{-}\right)=k-1$
7. rank $\left(M-\lambda x x^{*}\right)=k$
8. $\operatorname{rank}\left(M-\lambda u u^{*}\right)=k+1$
9. $\left(M-\lambda u u^{*}\right)^{n}=M^{n}-\lambda^{n} u u^{*}$
10. Let M be an $n \times n$ Hermitian matrix of ${ }^{f}$ $\operatorname{rank} k, k \neq n$. If $\lambda \neq 0$ is an cigenvalue of M with eorresponding unit column vector u, with $M u=\lambda u$, then which of the fotlowing are true?
11. $\operatorname{rank}\left(M-\lambda u u^{*}\right)=k-1$
12. $\operatorname{rank}\left(M-\lambda u \alpha^{*}\right)=k$
13. $\operatorname{rank}\left(M-\lambda u u^{+}\right)=k+1$.
14. $\left(M-\lambda u u^{n}\right)^{n}=M^{n}-\lambda^{n} u u^{n}$
15. $\mathrm{P}^{2} \times \mathrm{d}^{2}$ पर वात्तविक मान फलन B को बिम्न प्रकार पर्रिभाषित करे: यदि $v=\left(x_{1}, x_{2}\right)_{1} w=\left(y_{1}, y_{2}\right)$ का संबंध \mathbf{R}^{2} से हो, $B(u, w)=x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+$ $4 x_{2} y_{2}$ हो, और माने कि $v_{0}=(1,0)$ तथा $W=\left\{v \in \mathbb{R}^{2}: B\left(p_{0}, v\right)=0\right\}$. तब W
16. \boldsymbol{R}^{2} का उपसम्मष्टि नहीं है
17. $\{(0,0)\}$ के बरादर है
18. y - 3 सक्ष है
19. $(0,0)$ तथा $(1, I)$ से होकर जाने वाली रेखा है
20. Define a real valued function B on $\mathbb{1}^{2} \times$ 时 2 as follows. If $v=\left(x_{1}, x_{2}\right), w=\left(y_{1}, y_{2}\right)$ belong to ² 2 define $B(u, w)=x_{1} y_{1}-$ $x_{1} y_{2}-x_{2} y_{1}+4 x_{2} y_{2}$. Let $v_{0}=(1,0)$ and let $W=\left\{v \in\right.$ R $\left.^{2} ; B\left(v_{0}, v\right)=0\right\}$. Then W
21. is not a subspace of \mathbb{R}^{2}
22. equals $\{(0,0)\}$
23. is the y axis
24. is the line passing through $(0,0)$ and (1,1)
25. \boldsymbol{R}^{2} पर ज्ञन द्विषतती सूपीं
$Q_{1}(x, y)=x y$
$Q_{z}(x, y)=x^{2}+2 x y+y^{2}$
$Q_{3}(x, y)=x^{2}+3 x y+2 y^{2}$
पर विचारे। निम्न में से सही कथन्नो को खंटें:
26. Q_{7} तथा Q_{2} तुल्य है
27. Q_{1} तथा Q_{3} तुल्य है
28. Q_{2} तथा Q_{3} तुल्य हैं
29. समी तुल्य है
30. Consider the Quadratic forms
$Q_{1}(x, y)=x y$
$Q_{2}(x, y)=x^{2}+2 x y+y^{2}$
$Q_{3}(x, y)=x^{2}+3 x y+2 y^{2}$
on E^{2}. Choose the correct statements from below:
31. Q_{1} and Q_{2} are equivalent
32. Q_{1} and Q_{3} are equivalent
33. Q_{2} and Q_{3} are equivalent
34. all are equivalent
35. माने कि $\left\{u_{n}\right\}_{n 21}$ कास्तमवेक संख्याओं का ऐसा अनुक्रुम है तो दलिम्न शत्ती को संतुष्ट करता है:
(i) $(-1)^{n} u, \geq 0$, समी $n \geq 1$ के लिए
(2) $\left|u_{n+1}\right|<\frac{\left|u_{n}\right|}{2}$, स謽 $n \geq 13$ के लिए

निम्न मे से कौन सा कचन आवश्यकत: सही़ है?

1. $\sum_{m 21} u_{n}$ आ क अंक्मिसरित जहीं होता
2. $\sum_{12213} u_{n}$ शून्य्य में अभिसरित है
3. $\sum_{m \geq 13} u_{n}$ एक शून्येतर बस्त्तविक संख्या मे अभिस्तरित है
4. यदि $\left|u_{n-1}\right|<\frac{\left|m_{n}\right|}{2}$, सभी $2 \leq n \leq 13$ के लिए तब $\Sigma_{n \times 1} u_{n}$ एक 째णात्मक वास्तविक संख्या है
5. Let $\left\{u_{n}\right\}_{n=1}$ be a sequence of real numbers satisfying the following conditions:
(1) $(-1)^{\mu_{\nu_{n}}} \geq 0$, for all $n \geq 1$
(2) $\left|u_{n+1}\right|<\frac{\left|\psi_{n}\right|}{2}$, for all $n \geq 13$

Which of tine following statements are necessarily truc?

1. $\sum_{\text {nei }} u_{n}$ does not converge in $\boldsymbol{N}_{\text {. }}$.
2. $\sum_{n \geq 13} u_{n}$ converges to zero.
3. $\sum_{n z 13} u_{n}$ converges to a non-zero real number.
4. If $\left|u_{n-1}\right|<\frac{\left|u_{n}\right|}{2}$, for all $2 \leq n \leq 13$, then $\sum_{n z 2} u_{n}$ is a negative red number.
5. मानें कि S एक अनंत आव्यूह है। सिम्न में से कौन से कथन सत्य है?
6. यदि s तो N में इंजक्षान हो तो s गणनीय है
7. यदि S से ल शें अच्छीदन (सर्जेक्श्नल) हो तो S मां्वनीच है
8. यदि N से S में डंंज्ञैक्शन हो तो S गणनीय है
9. यदि N से s में अच्डादन (सर्जेक्शन) हो तो s गुणन्नीय है
10. Let S be an infinite set. Which of the following statements are true?
11. If there is an injection from S to \mathbb{N}, then S is countable
12. If there is a surjection from S to \mathbb{N}, then S is countable
13. If there is an injection from N to S, then S is countable
14. If there is a surjection from N to S, then S is countable
15. माना हुम अभाज्य संख्याओ को वर्धमान क्रम में लिखते हैं और $n-\mathrm{th}$ अभाज्य संख्या को p_{n} से दिखाते हैं, जैसे $p_{1}=2, p_{2}=3, p_{3}=5$, तथया मानें कि यदि
$S=\left\{s_{n}=p_{n+1} m p_{n} \mid \pi \in \mathbb{N}, n \geq 1\right\}$, तब निम्न में कौन-सा कथन सत्य है?
16. $\sup S=\infty$
17. limsup $n_{n \rightarrow \infty} s_{n}=\infty$
18. inf $S<\infty$ and inf $S=1$
19. $\liminf _{n \rightarrow \infty} s_{\eta} \geq 2$
20. Let p_{n} denote the n-th prime number, when we enumerate the prime numbers in the increasing order. For example, $p_{1}=2, p_{2}=3, p_{3}=5$, and so on. Let $S=\left\{s_{n}=p_{n+1}-p_{n} \mid n \in \mathbb{M}_{1} n \geq 1\right\}$. Then which of the following are correct?
21. $\sup S=\infty$
22. $\limsup _{n \rightarrow+\infty} s_{n}=\infty$
23. $\inf S<\infty$ and $\operatorname{mf} S=1$
24. Himinf ${ }_{n \rightarrow \infty} s_{n} \geq 2$
25. विद्वृत अंत्रराल (0.1) पर $n \geq 1$ के लिए निम्न फलनों के अनुक्रू पर विचार करें।
$f_{n}(x)=\frac{1}{2 \pi x+1}, g_{n}(x)=\frac{x}{2 \pi x+1}$. इन कथनो पर विचार करें।
(1) अनुक्रम $\left\{f_{n}\right\}$ एकसमानत: $(0,1)$ पर अीमसरित हीतो है।
(II)अनुक्रम $\left\{g_{n}\right\}$ एकसमानत: $(0,1)$ पर अभिसरित होनाता हैं
तब.
26. (I) सत्य है
27. (t) असत्य है
28. (I) असत्य है और (II) सत्य है
29. (1) तथा (I) दोनॉ सत्य हैं
30. For $n \geq 1$, consider the sequence of functions
$f_{n}(x)=\frac{1}{2+n x+1}, g_{n}(x)=\frac{x}{2 n x+1}$ on the open interval (0,1). Consider the statements:
(I) The sequence $\left\{f_{1}\right\}$ converges uniformly on (0, 1)
(II)The sequence $\left\{\theta_{n}\right\}$ converges uniformly on (0, 1)
Then,
31. (1) is true
32. (1) is false
33. (I) is false and (II) is true
34. Both (I) and (II) are true
35. मानें कि $[0,1]$ पर $\left\{f_{n}\right\}$ संतत वास्तांवक मान फलन्न का निम्न को संतुष्ट कर रहा अनुक्रम है:
(A) $\forall x \in \mathbb{R},\left\{f_{n}(x)\right\}$ एक ह्रसमान अनुक्रम है
(B) अनुक्रम $\left\{f_{n}\right\} 0$ मे एकसमान अनक्षितित होता है
यदि $g_{n}(x)=\sum_{k=1}^{n}(-1)^{k} f_{k}(x) \quad \forall x \in R$.
तब
36. sup norm के संबंध में $\left\{g_{n}\right\}$ कौरेश है
37. $\left\{g_{n}\right\}$ एक-समान अभिसारी है
38. $\left\{z_{n}\right\}$ बिंदुशः अभिसरण करे, यह आवश्यक नही है
39. $\exists M>0$ इस 9 कारार कि $\left|g_{n}(x)\right| \leq M, \forall n \in \mathbb{N}, \forall x \in \mathbb{R}$
40. Suppose that $\left\{f_{n}\right\}$ is a sequence of continuous real valued functions on [0,1]
satisfying the following:
(A) $\forall x \in \mathbb{E},\left(f_{n}(x)\right)$ is a decreasing sequence.
(B) the sequence $\left\{f_{n}\right\}$ converges uniformly to 0 .
Let $g_{n}(x)=\sum_{k=1}^{n}(-1)^{k} f_{k}(x) \quad \forall x \in \mathbb{R}$. Then
41. $\left\{h_{n}\right\}$ is Cauchy with respect to the sup norm.
42. $\left\{g_{n}\right\}$ is unifommly convergent
43. $\left\{\theta_{n}\right\}$ need not converge pointwisc
44. $\exists M>0$ such that $\left|g_{n}(x)\right| \leq M, \forall n \in \mathbb{N}, \forall x \in \mathbb{R}$
45. यदि $f:\left[\frac{1}{2}, 2\right] \rightarrow \mathbb{R}$ एक निरंतर वरंम्रान फलन हो तो, हम निर्धारित करते है
$g(x)=f(x)+f(1 / x), x \in[1,2]$.
[1, 2] के एक विभाजन P पर बियार करे g के उपरि-रीमानयोग तथा अधो-रीमान योग को $U(f, g)$ तथा $U(P, g)$ से क्रमश: दिखाएं, तो
46. किसी उपयुक्त f के लिए हमें $U(P, g)=L(P, g)$ मिल सकला है
47. किस्सी उपयुक्त f के लिए हमें $U(P, g) \neq U(P, g)$ मिल सकता है
48. $U(P, g) \geq L(P, g)$ होगा f कुख भी चुनै
49. $U(P, \theta)<L(P, g)$ होगा f कुख भी चुन्न
50. Given $f:\left[\frac{1}{2}, 2\right] \rightarrow$, a strictly increasing function, we put $g(x)=f(x)+$
$f(1 / x), x \in[1,2]$. Consider a partition P of $[1,2]$ and let $U(P, g)$ and $L(P, g)$ denote the upper Riemann sum and lower Rimnann sum of g. Then
I. for a suitabie f we can have $U(P, g)=$ $L(P, g)$
51. for a suitable f we can have $U(P, g) \neq$ $L(P, g)$
52. $U(P, g) \geq L(P, g)$ for all choices of f
53. $U(P, g)<L(P, g)$ for all choices of f
54. f को $(0,1)$ का वास्तविक माल संतन अदकलनीय फलन माने और $g=f^{\prime}+i f$, जहां $t^{2}=-I$ है तथा f को प्रथम अवकलज f^{\prime} है। $a, b \in(0,1)$ को f के 2 उत्तरोत्तर $\mathrm{Q}_{\mathrm{g}} \mathrm{F}$ हों तो लिम्न में से कौन से वैक्तव्य आवश्यकत: सत्प होंगे?
55. यदि $g(a)>0$, तो g कस्त्तविक रेखा को उपरि अर्द्धतल से निम्न अर्द्धतल a पर पार करता है।
56. यदि $g(a)>0$, तो g वास्तदिक रेखा को निम्न ऊर्द्धतल से उपरि अर्द्धतल जाके में a पर पार करता है।
57. यदि $g(a) g(b) \neq 0$, तब $g(a), g(b)$ का चिन्ह एक ही है।
58. यदि $g(a) g(b) \neq 0$, तब $g(a), g(b)$ के

चिन्ह विपरीत हैं।

77. Let f be a real valued continuously differentiable function of $(0,1)$. Set $g=f^{\prime}+i f$, where $i^{2}=-1$ and f^{\prime} is the derivative of f. Let $a, b \in(0,1)$ be two consecutive zeros of f. Which of the following statements are necessarily true? 1. If $g(a)>0$, then g crosses the real line from upper half plane to tower half plane at a
78. If $g(a)>0$. then g crosses the real line from lower half plane to upper half plane at a
79. If $g(a) g(b) \neq 0$, then $g(a), g(b)$ have the same sign
80. If $g(a) g(b) \neq 0$, then $g(a), g(b)$ have opposite sigis
81. A की व्युत्क्रमणीय दक्तविक $n \times n$ आव्यूह मारने। एक फलन $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{B}$ को $F(x, y)=\{A x, y\}$ से परिभरषित करे जहां $(x, y) x$ तथा y का आंतर गुणन है। यदि $D F(x, y)$ को (x, y) पर F का अवकलज मान लें जो $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ का रेखिक रूपांतरण है, तब
82. यदि $x \neq 0$, तब $D F(x, 0) \neq 0$
83. यदि $y \neq 0$. तब $D F(0, y) \neq 0$
84. यदि $(x, y) \neq(0,0)$ तः $D F(x, y) \neq 0$
85. यदि $x=0$ या $y=0$, तब $D F(x, y)=0$
86. Let A be an invertible real $n \times n$ matrix. Definc a function $F:$ 駺 $^{n} \times \mathbb{R}^{n} \rightarrow$ by $F(x, y)=\langle A x, y\rangle$ where $\langle x, y\rangle$ denotes the inner product of x and y. Let $D F(x, y)$ denote the derivative of F at (x, y) which is a linear transformation from 限 $^{n} x$ $\vec{B}^{n} \rightarrow \mathbb{R}$. Then
87. If $x: 0$, then $D F(x, 0) \neq 0$
88. If $y \neq 0$, then $D F(0, y) \neq 0$
89. If $(x, y) \neq(0,0)$ then $D F(x, y) \neq 0$
90. If $x=0$ or $y=0$, then $D F(x, y)=0$

Unit-2

79. किसी भी समूह G के लिए, Aut(G) को G की स्दाकारिकताओं का समूह मान लें। निम्न में से कौन से सही हैं?
80. यदि G परिरीमित है, तब Aut(G) परीसीमित्त है
81. यदि C चक्रिक है, तब $\mathrm{Aut}(\mathrm{G})$ चक्रिक है
82. यदि G अनंत है, तब $A u t(\mathrm{G})$ अनंत है
83. यदि $\operatorname{Aut}(\mathrm{G})$ को $\mathrm{Aut}(\mathrm{H})$ का समरूपी मालें जहाँ C तथा H दो समूह हॉ, तो G भी H का समरूपी है
84. For any group G, let Aut(G) denote the group of automorphisms of G. Which of the following are true?
85. If G is finite, then $A u t(G)$ is finite.
86. If G is cyclic, then $A u t(G)$ is cyclic
87. If G is infinite, then $A u t(G)$ is infinite
88. If $\operatorname{Aut}(G)$ is isomorphic to $A u t(H)$. where G and H are two groups, then G is isomerphic to H
89. G को निम्न गुण वाला समूह मानें ; कोई्ड़ की धन पूर्णाकों m, n तथा r के लिए G में ऐसे अवस्यव g तथा k है, कि $\operatorname{order}(g)=m$. $\operatorname{order}(h)=n$ तथा order $(g h)=r$, तब निम्न में से कौन से कथन आवश्यकत, सत्य हैं?
90. σ अनंत समूह ही होगा
. 6 चक्रिक्रिक समूह नही हो सकाता
91. G में अलंस बहु (infinitely many) चक्रिक उपसमूह है
92. G अन्-आबेली समूहु ही छोगा
93. Lef G be a group with the following property: Given any positive integers m, n and r there exist elements g and h in G such that $\operatorname{order}(g)=m$, order $(h)=n$ and $\operatorname{order}(g h)=r$. Then which of the following are necessarily true?
94. G has to be an infinite group
95. G cannot be a cyclic group
96. G has infinitely many cyclic subgroups
97. G has to be a non-abelian group
98. मार्न कि R एक वम्नय $\mathbb{C}\left[x \mid /\left(x^{2}+1\right)\right.$ है। निम्न में सही कथन छॉरिएए:
I. $\operatorname{dim}_{c} R=3$
99. R की ठीक-ठीक दो अभाज्य गुणजावली हैं
.7. R एक अद्वितीय गुणनखंडन प्रांत (UFD) है
100. $(x) R$ की उचिच्ठ्ड गुणजाकली है
101. Let R be the ring $\mathbb{C}[x] /\left(x^{2}+1\right)$. Pick the correct statements from below:
102. $\operatorname{dim}_{c} R=3$
103. R has exactly two prime ideals
104. R is a UFD
105. (x) is a maximal ideal of R
106. $f(x)=x^{7}-105 x+12$ मार्मे तो निम्न में से कौन से कथन सही हैं?
I. 母 पर $f(x)$ सघुकरणीय है
107. ऐसा पूणीक m है जिसके लिए $f(m)=105$
108. ोसा पूर्णाक m है जिसके लिए $f(m)=2$
109. $f(m)$ किसी की पूरीक m के लिए अमाज्य संख्या नही है
110. Let $f(x)=x^{7}-105 x+12$. Then which of the following are correct?
111. $f(x)$ is reducible over
112. There exists an integer m such that $f^{\prime}(m)=105$
113. There exists an integer m such that $f(m)=2$
114. $f(m)$ is not a prime number for any integer m
115. मान्न कि $\alpha=\sqrt[5]{2}$ ह R तथा $\xi=\exp \left(\frac{2 \pi i}{5}\right)$. माने कि $K=Q(\alpha \beta)$. निम्न में से सही कथजों को चुन्नें
116. \subset की क्षेत्र समाकारिता σ है, ऐसे कि $\sigma(K)=K$ तथा $\sigma \neq i d$
117. C की क्षेत्र समाकारिता a है, ऐसे कि $\sigma(K) \neq K$
118. q का परेमिंत विस्तार E इस तरह से है कि $K \leq E$ तथा E की हर क्षेत्र समाकारिता σ के लिए $\sigma(K) \leqslant E$
119. K की सब क्षेत्र समाक्रारिताओं σ के लिए, $\sigma(\alpha \xi)=\alpha \xi$

83．Let $\alpha=\sqrt[5]{2} \in \mathbb{R}$ and $\xi=\exp \left(\frac{2 \pi t}{5}\right)$ ．Let $K=\$(\alpha \xi)$ ．Pick the correct statements from below：
1．There exists a field automorphism σ of E such that $\sigma(K)=K$ and $\sigma \neq i d$
2．There exists a field automorphism of of \subset such that $\sigma(K) \neq K$
3．There exists a finite extension E of Q such that $K \subseteq E$ and $\sigma(K) \leq E$ for every field automorphism σ of E
4．For alf fietd automorphisms σ of K_{+} $\sigma(\alpha \xi)=\alpha \xi$

84．मान्न कि $X=\left\{\left(x_{i}\right)_{t_{21}}: x_{1} \in\{0,1\}\right.$ सभी $i \geq$ 1 के लिए ज जबके मीट्रिक $d\left(\left(x_{i}\right),\left(y_{i}\right)\right)=$ $\sum_{i z 1}\left|x_{i}-y_{i}\right| 2^{-1}$ ．यदि $f: X \rightarrow[0,1]$ वह फलन हो जिसे $f\left(x_{i}\right)_{t z 1}=\sum_{121} x_{1} 2^{-d}$ परिभाषित करता है तो निम्न में के सही कथन चुनें：
1．f संतत है
2．f onto है
3．fone－wone है
4．f विवृत है
84．Let $X=\left\{\left(x_{i}\right)_{t=1}: x_{i} \in\{0,1\}\right.$ for all $\left.i \geq 1\right\}$ with the metric $d\left(\left(x_{i}\right),\left(y_{i}\right)\right)=$
$\sum_{i \geq 1}\left|x_{i}-y_{i}\right| 2^{-i}$ ．Let $f: X \rightarrow[0,1]$ be the function defined by $f\left(x_{i}\right)_{l \geq 1}=$ $\sum_{i z 1} x_{i} 2^{-1}$ ．Choose the correct statements from below：
1．f is continnous
2．f is onto
3．f is me－tome
4．f is open
85．नारे कि का एक उपसमुच्थय A है जो $A=\cap_{\pi=1} V_{n}$ की संतुष्ट करता है，जहां हर $n \geq 1$ के जिए，V_{n} ，叹 का एक विक्टृत संत्न उपसमुच्यय है। निम्न में से कौन सा सही है？
1．A एक ओरिक्त समुच्चय है
2．A गपनीय है
3．A अगणनीय है
4．A ，昤 में सघन है

85．Let A be a subset of R satisfying $A=$ $n_{n \geq 1} V_{n}$ ，where for each $n \geq 1, V_{n}$ is an open dense subset of 珔．Which of the following are correct？
1．A is a non－empty set
2．A is countable
3．A is uncountable
4．A is dense in \mathbf{R}^{2}
86．H को उपरि अर्ट्ध तल माने अर्थात्

$$
H=\{x=x+i y: y>0\}
$$

2 EH के लिए，निम्न में से कौँन से करणन सही 考？
1．$\frac{1}{t} \in H$
2．$\frac{1}{2^{2}} \in H$
3．$\frac{-7}{n+1} \in H$
4．$\frac{z}{2 z+1} \in H$

86．Let H denote the upper half plane，that is， $H=\{z=x+i y: y>0\}$
For $z \in H$ ，which of the following are true？
1．$\frac{1}{z} \in H$
2．$\frac{1}{2^{2}} \in H$
3．$\frac{-z}{z+1} \in H$
4．$\frac{z}{z z+1} \in H$

87．माँनें कि $f: C \rightarrow C$ विश्लेखिक फलन है। तब निम्न में से कौन से कथन सहै है？
1．यदि सभी $z \in C$ के लिए $|f(z)| \leq 1, f^{\prime}$ के C में अनंत：बहुत श्नून्य है
2．यदि f onto हो，तो फलन $f(\cos z)$ onto है
3．यदि f onto हो，तो फलन $f\left(e^{*}\right)$ unto है
4．यदि f is one－oane है，तो फलन
$f\left(z^{4}+z+2\right)$ one－one है ；
87．Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic finnction．Then which of the following statements are true？
1．If $|f(z)| \leq 1$ for all $z \in C$ ，then f^{t} has infinitely many zeros in \mathbf{C}
2．If f is onto，then the function $f(\cos z)$ is onto
3．If f is onto，then the finction $f\left(e^{2}\right)$ is onto
4．If f is one－dite，then the function $f\left(z^{4}+z+2\right)$ is one－one
88. सर्बत्न वैश्लेषिक फलन $f(z)=1+z+z^{20}$ तथा $g(z)=e^{z}, z \in \mathbb{C}$ पर दिचार करें । निम्न में से कौन से कयन सही है?

1. $\lim _{i z,+\infty}|f(z)|=\infty$
2. $\lim _{|z|+\infty}|g(z)|=\infty$
3. $f^{-1}(\{z \in \mathbb{C}:|z| \leq R)$ हर $R>0$ के लिए परिसद्ध है
4. $g^{-1}(\{z \in \mathbb{C}:|z| \leq R\})$ हरं $R>0$ के लिए परिबद्ध है
5. Consider the entire functions $f(z)=1+$ $z+z^{20}$ and $g(z)=e^{z}, z \in C$. Which of the following statements are true?
6. $\lim _{|z| \rightarrow \infty}|f(z)|=\infty$
7. $\lim _{|z| \rightarrow \infty}|g(2)|=\infty$
8. $f^{-1}(\{z \in \mathbb{C}:|z| \leq R\})$ is bounded for every $R>0$
9. $g^{-1}(\{z \in \mathbb{C}:|z| \leq R\})$ is bounded for every $R>0$
10. निम्न से कौन सा कथन सही है?
11. $\tan 2$ एक सर्वनवैै्लेखिक फलन है
12. $\tan z \mathbb{C}$ पर अनंतकी फलन है
13. ∞ पर $\tan 2$ में दिलग विचिच्रता है
14. $\infty=$ पर $\tan z$ में अवियुक्त विचित्रता है
15. Which of the following statements are true?
16. $\tan x$ is an entire function
17. $\tan z$ is a meromorphic function on C
18. $\tan z$ has an isolated singularity at ∞
19. $\tan z$ has a non-isolated singularity at ∞
20. यदि $a_{1}<a_{2}<\cdots<a_{54}$ दिए भए ऐसे मिन्नfिन्ज धन पूर्णांक हों कि $1 \leq a_{i} \leq 100$ सभt $i=1,2, \ldots, 51$ के लिए। तब निम्न में से कौन से कथन सही है?
21. ऐसे ℓ तथा j है जिनके लिए $1 \leq t<j \leq 51$ तथा a_{f} को a_{f} से विभाजित कर सकने की शत्त पूरी होती है।
22. ऐसा i है कि $1 \leq t \leq 51$ जहां a_{t} दिषम पूर्णांक है
23. ऐसा j है कि $1 \leq j \leq 51$ जारां a_{f} सम पूर्णांक है
24. ऐसा $\ll j$ है कि $\left|a_{1}-a_{j}\right|>51$
25. Let $a_{1}<a_{2}<\cdots<a_{51}$ be given distinct natural numbers such that $1 \leq a_{i} \leq 100$ for all $i=1,2 \ldots, 51$. Then which of the following are correct?
26. There exist I and $/$ with $1 \leq i<j \leq 51$ satisfying a_{t} divides a_{f}.
27. There exists i with $1 \leq i \leq 5 I$ such that a_{i} is an odd integer.
28. There exists j with $1 \leq j \leq 51$ such that \mathfrak{a}_{j} is an even integer.
29. There exist $i<j$ such that $\left|a_{i}-a_{j}\right|>51$.

Unit- 3

91. मार्ने कि फलन $u(x, t)$ आंशिक अवकलन समीकरण (PDE): $u_{t}+u u_{x}=1, x \in \mathbb{R}, t>0$, तथा प्रारंमिक अवस्था $u\left(\frac{t^{2}}{4}, t\right)=\frac{t}{2}$ का सततुष्ट करता है, तथब प्रारंभिक मान समस्या (IVP) का/के
92. केदल एक हल है
93. दो हल हैं
94. संख्या में अनंत हल हैं
95. ऐसे हल हिनमें से कोई भी अमिलक्षणिक आथार वक्र पर अवकलनीय नहीं है
96. Let $u(x, t)$ be a function that satisfies the PDE : $u_{t}+u u_{x}=1, x \in \mathbb{R}, t>D_{\text {s }}$ and the initial condition $u\left(\frac{c^{2}}{4}, t\right)=\frac{t}{2}$. Then the IVP has
97. only one solution
98. two solutions
99. an infinite number of solutions
100. solutions none of which is differentfable on the characteristic base curve
101. $f:[0,1] \rightarrow[0,1]$ को अद्वितीय नियत बिंदु $f\left(x_{0}\right)=x_{\text {. }}$ के सूध दो बार संतत अवकलनीय फलन माने। दिए गए $x_{0} \in(0,1)$ के लिए प्रुरावृति $x_{n+1}=f\left(x_{n}\right)$ पर विचार करें जहां $n \geq 0$ हो।
यदि $L=\max _{x \in[0.1]}\left|f^{\prime}(x)\right|$, तो निम्न में से कौन से सही है?
102. यदि $L<1$, तो x_{n}, x. पर अभिसरित होगा
103. x_{x} अभिसरित होता हैं x_{2} पर. यदि $L \geq 1$
104. तुटि $e_{n}=x_{n}-x$. शर्त $\left|e_{n+1}\right|<L\left|e_{n}\right|$ को संतुष्ट करता है
105. यदि $f^{\prime}\left(x_{*}\right)=0$, तो कुछ्छ $C>0$ के लिए $\left|e_{n+1}\right|<C\left|e_{n}\right|^{2}$
106. Let $f:[0,1] \rightarrow[0,1]$ be twice continuously differentiable function with a unique fixed point $f\left(x_{*}\right)=x_{*}$. For a given $x_{0} \in(0,1)$ consider the iteration $x_{n+1}=f\left(x_{n}\right)$ for $n \geq 0$.
If $L=\max x_{x \in[0,1]} f^{\prime}(x)$, then which of the following are true?
107. If $L<I_{+}$then x_{n} converges to x.
108. x_{n} converges to x_{s} provided $L \geq 1$
109. The crror $e_{n}=x_{n}-x_{2}$ satisfles $\left|e_{n+1}\right|<L\left|e_{n}\right|$
110. If $f^{\prime}\left(x_{0}\right)=0$, then $\left|e_{n+1}\right|<\varepsilon\left|e_{n}\right|^{2}$ for some $C>0$
111. मानें कि $u(x)$ परिसीमा मान समस्या

$$
(B V P) \quad\left\{\begin{array}{c}
u^{\prime}+u^{\prime}=0, \quad x f(0,1) \\
u(0)=0 \\
u(1)=1 .
\end{array}\right.
$$

को संतुष्ट करता है। (BVP) की परिभित अंतर सन्निकटन पर व्विचार करें
$(B V P)_{M}\left\{\begin{array}{c}\frac{U_{j+1}-2 U_{j}+U_{t-2}}{n^{2}}+\frac{v_{t+2}-U_{t-1}}{2 \hbar}=0, j=1 \ldots . N-1 \\ U_{t}=0 \\ U_{k}=1\end{array}\right.$
U_{j} यहां पर $u\left(x_{j}\right)$ का सन्लिकरन हैं, जहां $x_{j}=f h ; j=0, \ldots, N,[0,1]$ का विभाजन है जखकि $h=I / N$ एवं N एक धनात्मक पूरीक है। तब निम्न में से कौन से कथन सत्य हैं?

1. $(B V P)_{B}$ का कुष्ध $a, b \in \mathbb{R}$ के लिए $U_{y}=a r^{\prime}+b$ के रूप का हल है. जाना $a, b \in \boldsymbol{R}, r \neq 1$ और जहाँ, r इसे संतुष्ट करता है: $(2+h) r^{2}-4 r+(2-h)=0$
2. $U_{t}=\left(r^{\prime}-1\right) /\left(r^{N}-1\right)$ जहां r इसे संतुष्ट करता है: $(2+h) r^{2}-4 r+(2-h)=0$ तथा $r \neq 1$
3. x में एकटिष्ट है u
4. $\dot{\text { मे एकदिष्ट है } v_{t}}$
5. Lel $u(x)$ satisfy the boundary value problem

$$
(B V P) \quad\left\{\begin{array}{cl}
u^{\prime \prime}+u^{\prime}=0, & x \in(0,1) \\
u(0)=0 \\
u(1)=1
\end{array}\right.
$$

Consider the finite difference approximation to ($B \vee P$)
$(B \vee P)_{M}\left\{\begin{array}{c}\frac{U_{j 11} \cdot 2 U_{j}+u_{j-1}}{h^{2}}+\frac{U_{f, 1}-w_{j-1}}{2 k}=0, j=1, \ldots, N-1 \\ U_{0}=0 \\ U_{N}=1\end{array}\right.$
Here U_{j} is an approximation to $u\left(x_{j}\right)$ where $x_{j}=j h, j=0, \ldots, N$ is a partition of [0,1] with $h=1 / \mathrm{N}$ for some positive integer N. Then which of the following are true?

1. There exists a solution to (RVP) of the form $U_{j}=a r r^{\prime}+b$ for some $a, b \in \mathbb{R}$ with $r \neq 1$ and r satisfying $(2+h) r^{2}=$ $4 r+(2-h)=0$
2. $U_{j}=\left(r^{\prime}-1\right) /\left(r^{N}-1\right)$ where r satisfies $(2+h) r^{2}-4 r+(2-h)=0$ and $r \neq 1$
3. u is monotonic in x
4. U_{j} is monotonic in j
5. $y(0)=0, y(1)=0$ का मालन करते हुए फल्लनक $/[y]=\int_{0}^{1}\left[\left(y^{\prime}\right)^{2}-\left(y^{\prime}\right)^{4}\right] d x$ पद दिवार करे। खंडित चरम एक संत्त चरम है जिसके अवकसज में परिसीमित संख्ज्या में बिंदुओं पर फलुति असांतत्य है। तब निम्न में से कौन से कधन सही हैं?
6. कौई खंडित चरम नहीं हैं तथा $y=0$ एक चरम है
7. एक कोई अद्वितीय खंडित चरम होगा
8. एकाधिक तथा परिसीमित: बह खांडित चरम हैं
9. अनंत बहु खंडित चरम है
10. Consider the functional
$f[y]=\int_{0}^{1}\left[\left(y^{\prime}\right)^{2}-\left(y^{\prime}\right)^{4}\right] d x$ subject to $y(0)=0, y(1)=0$. A broken extremal is a continuous extremal whose derivative has jump discontinuities at a finite number of points. Then which of the following Statements are true?
11. There are no broken extremals and $y=0$ is an extremal
12. There is a unique broken extremal
13. There exist more than one and fentely many broken extremals
14. There exist infinitely many broken extremals
15. $y(x)=y^{\prime}(0)=y(1)=0, y^{\prime}(1)=6$. का पालन करते हुए फलनक
$\int[y]=\int_{0}^{1}\left[720 x^{2} y-\left(y^{n}\right)^{7}\right] d x$ के चरम है:
16. $x^{5}+2 x^{3}-3 x^{2}$
17. $x^{5}+4 x^{4}-5 x^{3}$
18. $x^{5}+x^{4}-2 x^{3}$
19. $x^{6}+4 x^{3}-6 x^{2}$
20. The extremais of the functional
$J[\dot{y}]=\int_{0}^{1}\left[720 x^{2} y-\left(y^{\prime \prime}\right)^{2}\right] d x$, subibect to $y(x)=y^{\prime}(0)=y(1)=$ $0, y^{\prime}(1)=6$, are
21. $x^{6}+2 x^{3}-3 x^{2}$
22. $x^{5}+4 x^{4}-5 x^{3}$
23. $x^{5}+x^{4}-2 x^{3}$
24. $x^{6}+4 x^{3}-6 x^{2}$
25. यदि
$\left.\varphi(x)=I-2 x-4 x^{2}+\int_{0}^{x}\right\}+6(x-t)-$ $\left.4[x-t)^{2}\right] \varphi(t) d t$,
का हल φ है, तो $\varphi(\log 2)$ का मान है
26. 2
27. 4
28. 6
29. 8
30. If φ is the solution of
$\varphi(x)=1-2 x-4 x^{2}+\int_{0}^{x}[3+$
$\left.6(x-t)-4(x-t)^{2}\right] \varphi(t) d t$.
then $\psi(\log 2)$ is equal to
31. 2
32. 4
33. 6
34. 8
35. $K(x, t)= \begin{cases}x(t-1), & 0 \leq x \leq t \\ t(x-1), & t \leq x \leq 1\end{cases}$

अष्ठि वाल्ले समघाती प्रेडालेक्त समाकल समीकरण की अभिलष्षणणिक संख्या तथा उसके संगत अभिलक्षण्रिक मान हैं
I. $\lambda=-\pi^{2}, \varphi(x)=\sin \pi x$
2. $\lambda \fallingdotseq-2 \pi^{2}, \varphi(x)=\sin 2 \pi x$
3. $\lambda=-3 \pi^{2}, \varphi(x)=\sin 3 \pi x$
4. $\lambda=-4 \pi^{2}, \varphi(x)=\sin 2 \pi x$
97. A characteristic number and the corresponding. eigenfunction of the homogencous Fredhoim integral equation with kemel
$K(x, t)= \begin{cases}x(t-1), & 0 \leq x \leq t \\ t(x-1), & t \leq x \leq 1\end{cases}$
are

1. $\lambda=-\pi^{2}, \varphi(x)=\sin \pi x$
2. $\lambda=-2 \pi^{2}, \varphi(x)=\sin 2 \pi x$
3. $\lambda=-3 \pi^{2}, \varphi(x)=\sin 3 \pi x$
4. $\lambda=-4 \pi^{2}, \varphi(x)=\sin 2 \pi x$
5. द्रह्यमान m के बिंदु द्रह्यमान पर विचाए करे जो लंबाई a की द्रव्यमकन fिसीन हढ क्ञडी से जुड़ा है। क्ड़ा का दूसरा सित्र ऊध्र्व दिशा में इस तरह से चड़ाया जाता है कि समय $\&$ पर मूल बिंदु से इसके अधोसुखी विस्यापन्न तथा इसके स्थिति सदिश को निम्न से दर्शाया जा सकता है $z(t)=z_{0} \cos (\omega t)$. बबंदु द्वर्पयमान एक निशिच लल में गति कर रहा है तब्र लिशिचत समय t पर इसका ल्रिति सदिश निम्न से टिया जाता है:
$\bar{r}(t)=(a \sin \theta(t), \pi(t)+a \cos \theta(t))$. तब
बिंदु द्रह्यमान का गति-समीकरण है
6. $a \frac{d^{2} \theta}{\Delta t^{2}}+\left(g+z_{0} \omega^{2} \cos (\omega t)\right) \sin \theta=0$
7. $a \frac{a^{2} \theta}{d t^{2}}+\left(g-2_{0} \omega \cos (\omega t)\right) \sin \theta=0$
8. $a \frac{d^{2} \theta}{d t^{2}}+\left(g+z_{0}^{2} \cos ^{2} \cos (\omega t)\right) \cos \theta=0$
9. $a \frac{d^{2} \theta}{d \mathrm{r}^{2}}+\left(g-z_{\theta} \omega^{2} \cos (\omega t)\right) \cos \theta=0$
10. Consider a point mass of mass m which is altached to a mass-less rigid rod of length a. The other end of the rod is made to move vertically such that its downward displacement from the origin at time t is given by $z(t)=z_{0} \cos (\omega t)$. The mass is moving in a fixed plane and its position vector at time t is given by
$\bar{r}(t)=(a \sin \theta(t), z(t)+a \cos \theta(t))$.
Then the equation of motion of the point mass is
11. $a \frac{a^{2} \theta}{d t^{2}}+\left(g+z_{0} \omega^{2} \cos (\omega t)\right) \sin \theta=0$
12. $a \frac{d^{2} \theta}{d t^{2}}+\left(g-z_{0} \omega \cos (\omega t)\right) \sin \theta=0$
13. $a \frac{d^{2} \theta}{d t^{2}}+\left(g+z_{t}^{2} \omega^{2} \cos (\omega t)\right) \cos \theta=0$
14. $a \frac{d^{2} \theta}{d t^{2}}+\left(g-z_{0} \omega^{2} \cos (\omega t)\right) \cos \theta=0$
15. किसी द्वित्तीय कोटि असमघघती रैखिक अवकलन समीकरण के तीन हल हैं
$y_{k}(x)=1+x e^{x^{2}}, y_{2}(x)=(1+x) e^{x^{2}}-$ $1, y_{3}(x)=1+e^{x^{2}}$.
निम्न में से कौन कौन-कौन से अवकलन समीकरण व्यापद हल हैंहै?
I. $\left(C_{1}+1\right) y_{1}+\left(C_{2}-C_{1}\right) y_{2}-C_{2} y_{3}$, जहां C_{1} तथा C_{2} स्वेछ्ज स्थिरांक है
16. $C_{1}\left(y_{1}-y_{2}\right)+C_{2}\left(y_{2}-y_{3}\right)$, जां C_{1} तथा C_{2} स्वेच्ड स्थिरांक हैं
17. $C_{1}\left(y_{1}-y_{2}\right)+C_{2}\left(y_{2}-y_{3}\right)+C_{3}\left(y_{3}-y_{1}\right)$. जहां C_{1}, C_{2} तथा C_{3} स्वेच्छ स्थिरांक हैं
18. $C_{1}\left(y_{1}-y_{3}\right)+C_{2}\left(y_{3}-y_{2}\right)+y_{1}$, जहां C_{1} तथा C_{2} स्वेचल स्थिरांक हैं
19. Three solutions of a certain second order non-homogeneous linear differential equation are
$y_{1}(x)=1+x e^{x^{2}}, y_{2}(x)=(1+$ x) $e^{x^{2}}-1, y_{3}(x)=1+e^{x^{2}}$.

Which of the following is (are) general solution(s) of the differential equation? l. $\left(C_{1}+1\right) y_{1}+\left(C_{2}-C_{1}\right) y_{2}-C_{2} y_{3}$, where C_{1} and C_{2} are arbitrary constants
2. $C_{1}\left(y_{1}-y_{2}\right)+C_{2}\left(y_{2}-y_{3}\right)$, where C_{1} and C_{2} are arbitrary constants
3. $C_{1}\left(y_{1}-y_{2}\right)+C_{2}\left(y_{2}-y_{3}\right)+$ $C_{3}\left(y_{3}-y_{1}\right)$, where c_{1}, C_{2} and C_{3} are arbitrary constants
4. $C_{1}\left(y_{1}-y_{3}\right)+c_{2}\left(y_{3}-y_{2}\right)+y_{1}$, where C_{1} and C_{2} are arbitrary constants
100. यदि $x \in I$ तथा $p(x), q(x), r(x)$ अंतराल f में शून्येतर संत्त फलन हों ती अवकलन समीकरण $y^{n}+p(x) y^{\prime}+q(x) y=r(x)$ को आ्रीचल दिचरण विधि से हल करने में एक विश्रुण्ठ रूप के हल $y_{p}(x)=1_{1}(x) y_{2}(x)+v_{2}(x) y_{2}(x)$ द्रंढा जाता है जहां y_{2} तथा y_{2} हॉगे $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ के रैखिक स्वतंत्र हल तथा $v_{1}(x)$ एवं $v_{2}(x)$ फलन जिनका पता सगाला है। निम्न में से कौन से कथन आवश्यकत: सही है?

1. y_{1} तथा y_{2} का रांस्कियन / मे कमी श्रून्य而㽚
2. v_{1}, v_{2} तथा $v_{1} y_{1}+v_{2} y_{2}$ दो बार अवकलनीय हैं
3. v_{1} तथा v_{2} दो बार अवकलनीय ज हों परंतु $v_{1} y_{1}+v_{2} y_{2}$ दो बार अक्षकलनीय है
4. $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)$ के हलों के सभुच्चय में $a y_{1}+b y_{2}+y_{p}$ के रूप के
फलन है, जांां $a, b \in \mathbf{R}$ स्वेच्ता गुणांक है
5. The method of variation of parameters to solve the differential equation $y^{n}+$ $p(x) y^{\prime}+q(x) y=r(x)$, where $x \in J$ and $p(x), q(x)$, r(x) are non-zero continuous functions on an interval f, seeks a particular solution of the form $y_{p}(x)=$ $v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x)$, where y_{2} and y_{2} are linearly independent solutions of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, and $v_{1}(x)$ and $v_{2}(x)$ are functions to be determined, Which of the following statements are necessarily truc?
6. The Wronskian of y_{1} and y_{2} is never zero in 1
7. v_{1}, v_{2} and $v_{1} y_{1}+v_{2} y_{2}$ are twice differentiable
8. v_{2} and v_{2} may not be twice differentiable, but $v_{2} y_{2}+v_{2} y_{2}$ is twice differentiable
9. The solution set of $y^{\prime \prime}+p(x) y^{\prime}+$ $q(x) y=r(x)$ consists of functions of the form $a y_{1}+b y_{2}+y_{p}$ where $a, b \in \mathbb{R}$ are arbitrary constants
10. अभिलक्षागक मान समस्यु पर दिध्हार: $y^{\prime \prime}+\lambda y=0$ for $x \in(-1,1)$ $y(-1)=y(1)$
$y^{\prime}(-1)=y^{\prime}(1)$.
क्निम्न में से कौन से कथन सत्य है?
11. सब अं्रिलकणिक मान दढत: धनात्मक हैं
12. सत् आभिलक्षणिक मान छणेतर है
13. मिन्न अभिलक्षणिक मान $L^{2}[-1,1]$ में लांबिक है।
अभिलक्षणिक मानो के अनुक्रम उपर परिबद्य हैं।
14. Consider the eigenvalue problems

$$
\begin{aligned}
& y^{\prime \prime}+\lambda y=0 \text { for } x \in(-1,1) \\
& y(-1)=y(1) \\
& y^{\prime}(-1)=y^{\prime}(1) .
\end{aligned}
$$

Which of the following statements are true?

1. All eigenvalues are strictiy positive.
2. All cigenvalues are non-negative.
3. Distinct eigenfunctions are orthogonal in $L^{2}[-1,1]$.
4. The sequence of eigenvalues is bounded above.
5. प्रारंभिक मान समस्या (IVP):
$x u_{x}+t u_{t}=u+1, x \in R, t \geq 0$
$u(x, t)=x^{2}, t=x^{2}$ पर विधार करें।
6. (0,0) पर हल विशिच्त है
7. दिया आकाष बक्र $(x, t, u)=\left(\xi, \xi^{2}, \xi^{2}\right)$
(0,0) पर अभिलक्षणिक वक्र लही है
8. (x, t) तल में क्से आधार-अभिलक्षणिक बक्र (0.0) से नहीं गुज्रा रहा है
9. प्रारंमिक मान समस्या (IVP) का (0,0) पर अद्वितीय C^{1} हल हो, इसके लिए आवश्यक शर्ता नहीँ मितती
10. Consider the IVP:
$x u_{x}+t u_{c}=u+1, x \in R, t \geq 0$
$u(x, t)=x^{2}, t=x^{2}$.
Then
11. the solution is singuiar at (0,0)
12. the given space curve
$(x, t, u)=\left(\xi, \xi^{2}, \xi^{2}\right)$ is not a
characteristic curve at $(0,0)$
13. there is no base-characteristic curve in the (x, t) plane passing through $(0,0)$
14. a necessary condition for the [VP to have a unique C^{2} solution at $(0,0)$ does not hold

Usit-4

103. माऱ्े कि 0 के कामेक्ष सममित, सार्व संतत बंटन F का अनुसरण कर रहे स्वतंश याहध्रिक चर
$X_{1}, X_{2}, \cdots, X_{n}$ है तथ $i=1,2, \cdots, n$ के लिए
$S_{i}= \begin{cases}1 & \text { if } x_{i}>0 \\ -1 & \text { if } x_{i}<0 \\ 0 & \text { if } x_{i}=0\end{cases}$
$R_{i}=$ समुच्चय $\left\{\left\{X_{1}|\cdots| X_{n} \mid\right\}\right.$ मे $\left|X_{i}\right|$ की कोडि
है। निम्न में से कौन से कथन सहीं है?
104. $S_{1}, S_{2}, \cdots, S_{n}$ स्वतंत्र तथा सर्वसमतः संटित हैं
105. $R_{1}, R_{3}, \cdots, R_{n}$ स्वतंत्र तथा सर्वसमत: बंटित हैं
106. $S=\left(S_{3}, \cdots, S_{n}\right)$ तथा $R=\left(R_{4}, \cdots, R_{n}\right)$

स्वतंत्र हैं।
4. $T=\sum_{t=1}^{n} S_{t} R_{t}$ का वितरण F के फलन संष पर निर्मर नही करेगा
103. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent random variables following a common contiruous distribution F, which is symmetric about 0. For $i=1,2, \cdots, n$, define
$S_{i}=\left\{\begin{array}{ll}1 & \text { if } X_{i}>0 \\ -1 & \text { if } X_{i}<0 \\ 0 & \text { if } X_{i}=0\end{array}\right.$ and
$R_{i}=\operatorname{rank}$ of $\left|X_{t}\right|$ in the set $\left.\left\{\left|X_{2}\right| \cdots \mid X_{n}\right]\right\}$. Which of the following statements are correct?

1. $S_{1}, S_{2}, \cdots, S_{n}$ are independent and identicatily distributed
2. $R_{1}, R_{2}, \cdots, R_{n}$ are independent and identically distributed
3. $S=\left(S_{1}, \cdots, S_{n}\right)$ and $R=\left(R_{1}, \cdots, R_{n}\right)$ are independent
4. The distribution of $T=\sum_{i=1}^{n} S_{i} R_{t}$ does not depend on the functional form of F
5. मार्जे कि $Y \mid \theta \sim$ प्वासों $(\theta), \theta>0$ तथा θ का पूर्व घनत्व r इस प्रकार दिया जाता है:
($(\theta) \propto e^{-\pi \theta} \theta^{\beta-1}$, जाएां $\alpha>0$ तथा $\beta>0$ हाइपर प्राथल हैं। 今िम्न में से कौन से कयन सही हैं?
6. Y का उपांत बंटन हाइषर ज्यामेट्रिक है
7. B के उत्तर बंटन $Y=y$ को Gamme से दिखाते है
8. τ एक संयुख्नी पूर्व(लावर) है।
9. वर्गित श्रुटि हनिने फलन के लिए बेक्र द्वारा θ का आकलन $\frac{\beta+y}{\alpha+1}$ है।
10. Suppose $Y \mid \theta \sim$ Poisson $(\theta), \theta>0$ and prior density t of θ is given by $\tau(\theta) \propto e^{-\alpha \theta} \theta^{\beta-1}$
where $\alpha>0$ and $\beta>0$ are hyper-
parameters. Which of the following are tric?
I. Marginal distribution of Y is hypergeometric
11. Posterior distribution of θ given $Y=y$ is Gamma
12. t is a conjugate prior
13. Bayes ${ }^{+}$estimate of θ for squared error loss funtetion is $\frac{\beta+y}{a+1}$
14. एक पैखिक मॉडल $Y_{4 \times 2}=X_{4 \times 4} f_{4 \times 1}+E_{4 \times 1}$ पर विचार करें. जहुं
$\operatorname{Disp}(\varepsilon)=\sigma^{2} f_{4}$ कुष्ब $\sigma^{2}>0$ के लिए ।
डिजाईल आव्यूह X इस तर्ह से छांटी जानी कै कि इसके तत्व समुच्चय $\{-1,0,1\}$ में से हों। अब X के लिए 3 संभव पंसदौं पर खिद्हार करें $X_{1}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$,
$X_{2}=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1\end{array}\right]$ तथा
$x_{3}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1\end{array}\right]$.
निम्न में से कौन से कひन सही है?
15. X की तीज्ञों पसंदों के लिए $\beta-\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)^{\prime}$ आकलनीय
16. X की ताँनों पसंद्यों के लिए β_{i} तथा β_{8} के न्यूनतम द्वर्डित आकलन ξ_{1} तथा ξ_{f}, सब $i \neq j$ के लिए असहसंबद्ध्ध है।
17. X_{1} को तुलना में X_{2} एक बेहतर पसंद है।
18. X_{3} की तुलना में X_{2} एक बेहतर पसंद है।
19. Consider a linear model
$Y_{4 \times 1}=X_{4 \times 4} \beta_{4 \times 1}+\varepsilon_{4 \times 1}$, where
$\operatorname{Disp}(\varepsilon)=\sigma^{2} /_{4}$ for some $\sigma^{2}>0$. One needs to choose the design matrix X such that its elements take values in the set $\{-1,0,1\}$. Now, consider the following three choices of X
$X_{1}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$,
$X_{2}=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1\end{array}\right]$ and
$X_{3}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1\end{array}\right]$

Which of the following statements are true?

1. For ali three choices of X, $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)^{\prime}$ is estimable
2. For all thres choices of X, β_{l} and $\hat{\beta}_{f}$, the least squared stimates of β_{i} and β_{j}, are uncomelated for all $i \neq j$
3. X_{2} is a better choice than X_{1}
4. X_{2} is a better choice than X_{3}
5. $X_{1}, X_{2}, \cdots X_{16}$ को (.C.d. $N(0,1)$ मानें। किम्न में से कौन से कथन सही है?
6. $p\left\{x_{1}>x_{2}+x_{3}+\cdots+x_{10}\right\}=\frac{1}{2}$
7. $P\left(X_{1}>X_{2} X_{3} \cdots X_{10}\right\}=\frac{1}{2}$
8. $P\left\{\sin \left(X_{1}\right)>\sin \left(X_{2}\right)+\sin \left(X_{3}\right)+\cdots+\right.$ $\left.\operatorname{stn}\left(X_{10}\right)\right\}=\frac{1}{2}$
9. $P\left\{\sin \left(X_{1}\right)>\sin \left(X_{2}+X_{1}+\cdots+X_{x 0}\right)\right\}=\frac{1}{2}$
10. Suppose that $X_{1}, X_{2}, \cdots X_{10}$ are i.i.d. $N(0,1)$. Which of the following statements are correct?
11. $P\left\{X_{1}>X_{2}+X_{2}+\cdots+X_{10}\right\}=\frac{1}{2}$
12. $P\left\{X_{1}>X_{2} X_{3} \cdots X_{10}\right\}=\frac{1}{2}$
13. $P\left\{\sin \left(X_{2}\right)>\sin \left(X_{2}\right)+\sin \left(X_{3}\right)+\right.$ $\left.\cdots+\sin \left(X_{10}\right)\right\}=\frac{1}{2}$
14. $P\left\{\sin \left(X_{5}\right)>\sin \left(X_{2}+X_{\mathrm{a}}+\cdots+\right.\right.$ $\left.\left.X_{10}\right)\right\}=\frac{1}{2}$
15. दो एक समाल बंटनों $U(0,2)$ तथा $U(1,5)$ की वन्नीकरण समस्या पर दिचार कीजिए। मान्न कि $\pi(0<\pi<1)$ उस वर्ग की पूर्व प्राथिकता है जिसका $u(0,2)$ बंटन है। यदि $0-1$ हानि फलल पर विचार करें तो 扁म्न में से कौन सा कथन सही है?
16. $\pi<1 / 3$ के लिए, बेज़ जोखिम अअर्यत् बेज़क्लासीफ़यर की औसत मिसक्लासीकिकेश्ना प्रायिकता) $1 / 6$ से कम है।
17. $\pi>1 / 3$ के लिए, बेज़ जोखिम $1 / 6$ से कम है।
18. $\pi=1 / 3$ बेज़ ज़ोगिम $1 / 6$ है।
19. π, कुछ भी छांटे, बेज क्लासीफ़ायर अद्वितीय है
20. Consider a classification problem between two uniform distributions $U(0,2)$ and $U(1,5)$. Let $\pi(0<\pi<1)$ be the prior probability of the class having $U(0,2)$ distribution. If we consider the $0-1$ loss function, which of the following statements are correct?
21. For $\pi<1 / 3$, the Bayes' risk fi.e, the average misclassification probability of the Bayes classifter) is smallet than 1/6
22. For $\pi>1 / 3$, the Bayes' risk is smaller than !/6
23. For $\pi=1 / 3$, the Bayes' risk is $1 / 6$
24. For all choices of π, the Bayes. classifier is unique
25. माने कि $N(>n)$ इकाइर्यो की समध्टि में से निम्नवत् अनुक्रमत: $n(\geq 2)$ छकाइयां निकाली जाती है। $U(0,1)$ में से N आकार का यादच्चिक

नमूना $U_{1}, U_{2}, \cdots, U_{N}$ निकाला ज्ञाता है। $k-1 / h$ समष्टि इकाई खंटती है यदि $U_{x}<\frac{n-n_{k}}{N-k+1}, k=$ $1,2, \cdots, N$ जहां $n_{1}=0$ तथा $n_{k}=$ हर $k=2,3, \cdots, N$ के लिए मक्षली $(k-1)$ इकाइयों में से चांटी गई इकाईया की संख्या, तब

1. दूसरी इकाई के नभूले मे समिम्मलित होने की प्रायिक्कता $\frac{n}{N}$ है।
2. पइली तथा द्रसरी इकाई के नमूने में

सनिम्मलित होने की प्रायिकता $\frac{n(n-1)}{N(N-1)}$ है।
3. पह्ली इकाई के सम्मिलित न होने और दूसरी के नमूं में हौने को प्रूयिकता $\frac{n(N-n)}{N(N-1)}$ है।
4. पहली इकाई के सम्मिलित होने और दूसरी के न होने की प्रायिकता $\frac{n(\pi-1)}{N\{N-1\}}$ है।
108. Suppose $n(\geq 2)$ units are drawn from a population of $N(>n)$ units sequentially as follows. A random sample $U_{1}, U_{2}, \cdots, U_{N}$ of size N is drawn from $U(0,1)$. The k-th population tinit is selected if $U_{k}<\frac{n-n_{k}}{N-k+1}, k=1,2, \cdots, N$, where $n_{1}=0$ and $n_{k}=$ number of units selected out of first $k-1$ units for each $k=2,3, \cdots, N$. Then

1. The probability of inclusion of the $2^{\text {md }}$ unit in the sample is $\frac{\pi}{N}$
2. The probability of inclusion of the $i^{\text {se }}$ and $2^{\text {nd }}$ unit in the sample is $\frac{n(n-1)}{N(N-1)}$,
3. The probability of not including the ${ }^{2 x}$ unit and including the $2^{\text {nd }}$ unionn the sample is $\frac{n(H-n)}{N(N-1)}$
4. The probability of including the I ${ }^{x}$ unit but not including the $2^{\text {nd }}$ unit in the stample is $\frac{\pi(n-1)}{N(N-1)}$
5. तीन 'ट्लॉक' तथा धार 'ट्रीटमॅंC' A, B, C तथा D वाले एक क्लॉक डिज़ाईन पर विचार कीजिए जहां केवल A तथा B को ल्लॉक्स 1 के लिए, केक्वल A, B तथा D को 'ह्लोक्र- 2 के लिए। केबल C को "ल्लॉक-3 के लिए रखा गया है। तब परिणानी क्लॉक डिज्ञाइन
i. अपूर्ण है तथा संबद्ध्य नहीं है
6. अपूर्ण तथा असतुतिल है
7. संतुलित तथा संख्यूप है
8. न संतुलित है, न संबद्ध है
9. Consider a block design with three blocks and four treatments A, B, C and D where only A and B are alloted to block-1, onily A, B and D are allotted to block-2 and onily \mathcal{C} is allotted to block-3. Then the resuiting block design is
10. incomplete and not connected
11. incomplete and not balanced
12. balanced and connected
13. neither balanced nor comnected
14. मानैं कि x एक धनात्मक याहच्छिकचर है, जिसका प्रायिकता घनत्त्व फलन
$f(x)=\left(\alpha x^{\alpha-1}+\beta x^{\beta-2}\right) e^{-x^{\alpha}-x^{\beta}} ; x>0$ है जहां $a>0$ तथा $\beta>0$. तब a तथा β के कुछ मानो के किए X का ओीखिय फलन हो सकत्तर है
15. एक वर्द्धमान फलन
16. एक हासमान फलन
17. एक अचर फलन
18. एक अन्- एकदिष्ट फलन
19. Suppose X is a positive random variable with the following probability density function
$f(x)=\left(\alpha x^{\alpha-1}+\beta x^{\beta-1}\right) e^{-x^{\alpha}-x^{\beta}} ; x>0$,
for $\alpha>0$ and $\beta>0$. Then the hazard function of X for some choices of α and β can be
20. an increasing function
21. a decreasing function
22. a constant function
23. a non-monotonic function
24. एक समांतर तंच में $n(\geq 1)$ सर्वसम अबयव हैं। n अबयदो के जीवन कलल स्वतंत्र रूप से. सर्वथासमतः बंटित चर धतांकी याहचिक्षि चर हैं जिनका माध्य I है। यदि तंत्र का जीक्षलकाल x हो तो निम्न में से कौन से कथन सही हैं?
25. कुछ्ड n के लिए x का बहुलक 0 है
26. समी n के लिए x का बहुलक n से कम या π के बराबर है
27. सभी n के लिए x का माध्य 1 है या । से बङ़ है
28. कुछ n के लिए x का माधियक्यका 100 से अधिक है
29. A parallel system has $n(\geq 1)$ identical components. The lifetimes of the n components are independent identically distributed exponential random variables with mean l. If the lifetime of the system is denoted by X, then which of the following statements are true?
30. The mode of X is 0 for some n.
31. The mode of X is iess than or equal to n for all n.
32. The mean of X is greater than equal to 1 for alln.
33. The median of X is greater than 100 for some n.
34. माने कि $A B C$ xy-तल में एक त्रिभुज है जिसका कैंद्रक D है। निम्न मे से कौन सा बिंदु कमी फलन $7 x-10 y+1$ का मिलिमाईजर नहीं हो सकता जब कि (x, y) त्रिभुज $A B C$ के ङपर पड्ड जाता है?
35. A
36. B
37. D
38. Suppose ABC is a triangle on the x-plane with centroid D. Which of the following points can NEVER be a minimizer of the function $7 x-10 y+1$ as (x, y) runs over the triangle ABC ?
I. A
39. B
40. C
41. D
42. माने कि $x_{1}, x_{2}, \cdots, X_{n}$ एक याद्चच्धिक नमूना है जो $(0,2)$ पर एक समान बेंटन से लिया गया है। तथा तर धन पूर्णांक n के लिए $M_{n}=\max \left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ तब निम्न में से कौन से कथन सही है?
43. $M_{n} \rightarrow 2$ निश्रितत प्राय: रूप से
44. $M_{n} \rightarrow 2$ प्रसंमाव्य रू स स

3．$M_{x}+2$ खंटन से
4．$\frac{M_{n}-2}{\sqrt{n}}$ घ्रसामान्य बंटन में अभिसरित हो जाता है।

113．Suppose $X_{1}, X_{2}, \cdots, X_{n}$ is a random sample from the uniform distribution on $(0,2)$ and $M_{n}=\max \left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ for every positive integer n ．Then which of the following statements are true？
1．$M_{n} \rightarrow 2$ almest surely
2．$M_{n} \rightarrow 2$ in probability
3．$M_{n} \rightarrow 2$ in distribution
4．$\frac{M_{n}-2}{\sqrt{n}}$ converges in distribution to normal distribtution

114．मानें कि X_{1}, X_{2}, \cdots i．i．d．$N(0,1)$ याइचिध्रिक चर हैं। माने किं $S_{n}=X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}$ ， $\forall n \geq 1$ ．निम्न में से कौन से कथन सही है？
1．$\frac{s_{2}-n}{\sqrt{2}}-N(0,1)$ स部 $n \geq 1$ के लिए
2．种 $\varepsilon>0, P\left(\left|\frac{5_{n}}{n}-2\right|>\varepsilon\right) \rightarrow 0 . \quad n \rightarrow \infty$ के लिए
3．$\frac{s_{n}}{n} \rightarrow 1$ प्रायिकतन 1 के साथ
4．$P\left(S_{n} \leq n+\sqrt{n} x\right) \rightarrow P(Y \leq x) \forall x \in \mathbb{R}$ जहां $Y \sim N(0,2)$ ．

114．Let X_{1}, X_{2}, \cdots be i．i．d．$N(0,1)$ random variables．Let $S_{n}=X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}$ ， $\forall n \geq 1$ ．Which of the following statements are correct？
1．$\frac{s_{n}-n}{\sqrt{2}}-N(0,1)$ for all $n \geq 1$ ．
2．For all $\varepsilon>0, P\left(\left|\frac{s_{n}}{n}-2\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$ ．
3．$\frac{s_{n}}{n} \rightarrow 1$ with probability 1.
4．$P\left(S_{n} \leq n+\sqrt{n} x\right) \rightarrow P(Y \leq x) \forall x \in R$ ， where $Y \sim N(0,2)$ ．

115．अवस्था समष्टिड के किए माकर्व शृखला $\left\{x_{n}\right\}$ माने। किसी $t, j \in S$ के लिए，$p_{i j}^{(\mathrm{nt})}$ को i से j जाने के लिए π－चर्णीय संक्रमण प्रायिकता माने। अवस्या काल ！（l $\in S$ ）यदि d（l）मार्ने तो निम्न में से कौंम से कथन सही है？

1．यदि $d(f)=d(f)$ तथा $\lim _{n \rightarrow \infty} p_{i j}^{(n)}>0$ ．
2．यदि $d(0)=d(j)$ तय $p_{i j}^{(n)}>0$ तथा $p_{j t}^{(\text {（n）})}>0$ कुछ $n, m \geq 1$ के लिए
3．यदि $p_{t f}^{(n)}>0$ तया $p_{f}^{(m)}>0$ कुदा $n_{4} m \geq 1$ के लिए，तब $d(i)=d(d)$
4． $\lim _{\mathrm{n} \rightarrow \infty} p_{i j}^{(n)}>0$ का परिणामी है $d(i)=d(j)$

115．Let $\left\{X_{n}\right\}$ be a Markov chain with state space 5 ．For any $i, j \in S$ ，let $p_{i f}^{[n]}$ denote the n－step transition probability of going from i to l ．Let $d(i)$ denote the period of state $i(t \in S)$ ．Which of the following statements are correct？
1．If $d(l)=d(j)$ then $\lim _{n \rightarrow \infty} p_{i j}^{(n)}>0$
2．If $d(i)=d(j)$ then $p_{t /}^{(r)}>0$ and $p_{j i}^{(m)}>0$ for some $n, m \geq 1$
3．If $p_{i j}^{(n)}>0$ and $p_{j i}^{(m)}>0$ for some
$n, m \geq 1$, then $d(i)=d(f)$
4． $\lim _{n \rightarrow \infty} p_{(f)}^{(n)}>0$ implies $d(\rho)=d(j)$
116．संक्रम्नण प्रीयिकता आ⿸्यूह P वाली कार्कोव शृंखला पर विचार करें
$P=\left(\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 0 & 1 / 2 & 1 / 2 \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right)$ ．
किन्ही की दो अस्थाओ（तथा）के लिए， $y_{i=}^{[n]} l$ से $;$ आने की n－चरणीय संक्रमण प्रयिकता इंगित करता है। सही कर्म्नो को पहचासिए
1． $\lim _{n \rightarrow \infty} p_{t x}^{(x)}=2 / 9$ ．
2． $\lim _{n \rightarrow \infty} p_{21}^{(n)}=0$ ：
3． $\lim _{n \rightarrow \infty} p_{37}^{(n)}=1 / 3$ ．
4． $\mathrm{li} n_{n \rightarrow \infty} p_{13}^{(n)}=1 / 3$ ．
116．Consider a Markov chain with transition probability matrix P given by
$P=\left(\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 0 & 1 / 2 & 1 / 2 \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right)$ ．
For any two states i and j ，let $p_{i j}^{(n)}$ denote the n－step transition grobability of going from i to j ．Identify correct statements．

1. $\operatorname{lfm}_{n \rightarrow \infty} p_{11}^{(n)}=2 / 9$.
2. $\lim _{n+\infty} p_{21}^{(R)}=0$.
3. $\lim _{n \rightarrow \infty} p_{32}^{(n)}=1 / 3$.
4. $\lim _{n \rightarrow \infty} p_{13}^{(n)}=1 / 3$.
t:7. माने कि $\left(X_{1}, X_{7}\right)$ के लिए सार्व उपांत बंटन (common marginal distribution) F ए' $\operatorname{Corr}\left(X_{1}, X_{2}\right)=0$ द्विचर बंटनका अनुसरण करता है। तब निम्न में से कौन से कथन सही है?
5. $F=$ यूनिफ़ॉर्म $(0,1) \Rightarrow X_{1}$ तथा X_{2} स्वतंत्र है
6. $F=$ बर्नूली $(\theta) \Rightarrow X_{1}$ तथा X_{2} स्वतंत्र है
7. $F=$ डिस्क्रीट यून्निफ़ॉर्म $\{-1,0,1\} \Rightarrow X_{1}$ तथा X_{2} स्वतं है
8. $F=N(0,1) \Rightarrow X_{1}$ तथा X_{2} स्स्तंत्र है
9. Suppose that $\left(X_{1}, X_{2}\right)$ follows a bivariate distribution with common marginal distribution F and $\operatorname{Corr}\left(X_{1}, X_{2}\right)=0$. Then which of the following statements are correct?
10. $\mathrm{F}=\mathrm{Uniform}(0,1) \Rightarrow X_{1}$ and X_{2} are independent.
11. $F=\operatorname{Bernou} \boldsymbol{H i}(\theta) \Rightarrow X_{1}$ and X_{2} are independent.
12. $F=$ Discrete uniform $\{-1,0,1\} \Rightarrow X_{1}$ and X_{z} are independent.
13. $F=N(0,1) \Rightarrow X_{1}$ and X_{2} are indeperdent.
14. $X_{1}, X_{2}, \cdots, X_{n}$ को ऐेसे याद्धिक्रिक नभूने की तरह मानें जिसके लिए p.d.f. निम्नदत है
$f_{\theta}(x)=\left\{\begin{array}{cc}\frac{1}{\theta}, x^{\frac{\mathrm{T}-\theta}{\theta}}, & 0<x<1, \\ 0 . & \text { अन्यथा },\end{array}\right.$
जालं $\theta>0$. तब मिम्न में से कौन से कथन सही है?
15. $\prod_{i=1}^{n} X_{i}, \theta$ के लिए पर्याप्त्त है
16. $-\frac{1}{n} \sum_{i=1}^{n} \ln X_{1}, \theta$ के लिए पर्याप्त है
17. $\left[\prod_{i=1}^{\pi} x_{i}, \theta\right.$ के लिए अधिकतन संभाविताआकलन है
18. $-\frac{1}{n} \sum_{i=1}^{n} \ln X_{i}, \theta$ के लिए अधिकतम संभविता-आकलन है
19. Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample from the distribution with p.d.f.
$f_{\theta}(x)=\left\{\begin{array}{cc}\frac{1}{\theta}, x^{\frac{1-\theta}{\theta}}, & 0<x<1, \\ 0, & \text { otherwise, }\end{array}\right.$
where $\theta>0$. Then which of the following are true?
20. $\prod_{l=1}^{\pi} X_{i}$ is sufficient for θ.
21. $-\frac{1}{n} \sum_{t=1}^{n} \ln X_{t}$ is sufficient for θ.
22. $\prod_{i=1}^{n} X_{t}$ is a maxinum likelithood estimate for θ.
23. $-\frac{1}{n} \sum_{i=1}^{n} \ln X_{2}$ is a maximum tikelihood estimate for θ.
24. $\{-2,-1,1,2\}$ पर x एक विविक्त यद्तिखक्रक चर है जिसके प्रा़िकला द्रत्यमान फानल
$P_{\theta}[X=x], \theta \in\left\{\theta_{0}, \theta_{1}\right\}$ निम्नवत है

$-x$	-2	-1	$\overline{1}$	2
$\theta=\theta_{0}$	0.05	0.6	0.3	0.05
$\theta=\theta_{2}$	0.2	0.4	0.2	0.2

उद्देश्य $H_{0}: \theta=\theta_{0}$ बनाम $H_{1}: \theta=\theta_{1}$ का परीक्षण करना है। निम्न मे से कौन से कथन सही है?

1. क्रतित्तिक क्षेत्र $\{x=2\}$ दाली परीक्षण पद्ध्रते 0.05 आकार का एक सबसे शक्तिशाती परीक्षण है
2. क्रांतिक क्षेत्र $\{x=-2\}$ वात्ती पीक्षपण पद्घ्घते 0.05 आकार का एक सबसे शक्त्तिचाली परीक्षण है
3. क्रांतिक क्षेत्र $\{x=-1\}$ वाली परीक्षण पद्यदत्ति अप्ने आकार का एक सवसे शक्तिशाली पमीक्षण लहीं है
4. क्रांगतिक क्षेत्र $\{x=1\}$ वाली परीक्ष्तण पद्धति अपने आकार की एक सबसे शंक्तिशतली परीक्ष्रण लांीं है
5. X is a discrete random variable on $[-2,-1,1,2]$ with probability mass functions $P_{\theta}[X=x], \theta \in\left[\theta_{0}, \theta_{1}\right\}$ given below

x	-2	-1	1	2
$\theta=\theta_{0}$	0.05	0.6	0.3	0.05
$\theta=\theta_{1}$	0.2	0.4	0.2	0.2

The aim is to test $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$. Which of the following statements are correct?

1. The test procedure with critical region $\{x=2\}$ is a fintiot powerful test of size 0.05
2. The test procedure with critical region ($x=-2$) is a most powerful test of size 0.05
3. The test procedure with critical region $\{x=-1\}$ is notia most powerful test of its size
4. The test procedure with critical region $\{x=1$) is not a most powerful test of its size
5. मानै कि $(\theta, \theta+1)$ पर $X_{1}, X_{2}, \cdots, X_{n}$ एक समान बंटन में से लिया यादच्छिक्रक नमूना है, जहां $\theta \in \mathrm{x}$ एक अजात प्राचल है। मानै कि $X_{(1)}<X_{(2)}<\cdots<X_{(n)}$ संगत क्रम प्रतिदर्श हो। लिम्न में से कौन से अंतराल θ के लिए $100(1-\alpha) \%$ विश्वास्यता अंतरकल है?
6. $\left(-\infty, X_{(n)}-\alpha^{1 / n}\right)$
7. $\left(X_{(1)}+\alpha^{1 / n}-1, \infty\right)$
8. $\left(X_{n}+\frac{\alpha}{2}-1, X_{n}-\frac{\alpha}{2}\right)$
9. $\left(-\infty, x_{1}^{2}-\alpha\right)$
10. Suppose $X_{1}, X_{2}, \cdots, X_{n}$ is a random sample from uniform distribution on $(\theta, \theta+1)$, where $\theta \in \mathbb{R}$ is an unknown parameter. Let $X_{\{1\}}<X_{(2)}<\cdots<X_{(n)}$ be the corresponding order-statistics. Which of the following are $100(1-a) \%$ confidence intervals for θ ?
11. $\left(-\infty, X_{(n)}-\alpha^{1 / n}\right)$
12. $\left(X_{(1]}+\alpha^{1 / n}-1, \infty\right)$
13. $\left(X_{n}+\frac{a}{2}-1+X_{n}-\frac{a}{2}\right)$
14. $\left(-\infty, X_{1}-\alpha\right)$
