MATHEMATICS

PAPER-I SECTION A

1. Answer any four of the following:
(a) Let $V P_{3}(R)$ be the vector space of polynomial functions on reals of degree at most 3. Let D; $\mathrm{V} \rightarrow \mathrm{V}$ be the differention operator defined by
$\mathrm{D}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{1}+2 a_{2} x+3 a_{3} x^{2}$
(i) Show that D is a linear transformation
(b) Find the eigen values and the corresponding eigen vectors of $\mathrm{A}=\left(\begin{array}{cc}1 & 2 \\ 2 & -2\end{array}\right)$
(c) Let f, g : $a, b] \rightarrow \mathbb{R}$ be functions such that $f(x)$ and $g^{\prime}(x)$ exist for all $x \in[a, b]$ and $g^{\prime}(x) \neq 0$ for all x in (a, b). Prove that for some $C \in(\mathrm{a}, \mathrm{b})$

$$
\begin{equation*}
\frac{f(c)-f(a)}{g^{\prime}(b)-g(c)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \tag{10}
\end{equation*}
$$

(d) Let $\mathrm{f}: \mathrm{IR}^{2} \rightarrow \mathrm{IR}$ bedefined by
$f(x, y)=\frac{x y^{2}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$
$=0$ for $(\mathrm{x}, \mathrm{y})=(0,0)$
Show that the partial derivatives $D_{1} f(0,0)$ and $D_{2} f(0,0)$ vanish but f is not differentiable at $(0,0)$.
(e) A line makes angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube. Show that

$$
\begin{equation*}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} y+\cos ^{2} \delta=\frac{4}{3} \tag{10}
\end{equation*}
$$

2. (a) Show that the vectors $(1,2,1),(1,0,-1)$ and $(0,-3,2)$ form a basis for $\mathrm{R}^{(3)}$
(b) Determine non-singular matrices P and Q such that the matrix PAQ is in canonical form, where
$A=\left(\begin{array}{rrrr}5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0\end{array}\right)$
Hence find the rank of A .
(c) Find the minimum polynomial of the matrix.
$\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$,
and use it to determine whether A is similar to a diagonal matrix.
(d) Show that the quadratic form
$2 x_{2}-4 x y+3 x y+6 y^{2}+6 y z+8 z^{2}$
in three variables is positive definite.
(a) Lei $f(x)=e^{-6 x^{2}} \quad(x \neq 0)$
$=0$ for $\mathrm{x}=0$
Show that $\mathrm{f}^{\prime}(0)=0$ and $\mathrm{f}^{\prime}(0)=0$.
Write $\mathrm{f}^{\mathrm{k})}(\mathrm{x})$ as $\mathrm{P}\left(\frac{1}{x}\right) f(x)$ for $\mathrm{x} \neq 0$, where P is a polynomial and $\mathrm{f}^{\mathrm{k})}$ denotes the k^{kh} derivation of f .
(b) Using Lagrange multipliers, show that a rectangular box with lid of volume 1000 cubic units and of least surface area is a cube of side 10 units.
(c) Show that the area of the surface of the solid obtained by revolving the arc of the curve $y=c$ $\cosh \left(\frac{x}{c}\right)$ ioining $(0, c)$ and (x, y) about the x-axis is
(d) Definie $\Gamma:(0, \infty) \rightarrow \mathrm{IR}$ by
$\Gamma(x)=\int_{0} f^{x} e^{-} d t$. Show that this integral converges for all $\mathrm{x}>0$ and that $\Gamma(\mathrm{x}+1)=\mathrm{x} \Gamma(\mathrm{x})$.
3. (a) Show that the equation $\sqrt{f x}+\sqrt{g y}+\sqrt{h z}=0$ represents a cone that touches the co-ordinate planes and that the equation to its reciprocal cone is
$f y z+g z x+h x y=0$
(b) Show that any two generators belonging to the different system of generating lins of a hyperboloid of one sheet intersect.
(c) Show that the locus of a point from which three mutually perpendicular tangent lines can be drawn to the paraboloid

$$
\begin{align*}
& a x^{2}+b y^{2}+2 z=0 \text { is } \\
& a b\left(x^{2}+y^{2}\right)+2(a+b) z=1 \tag{10}
\end{align*}
$$

(d) Show that the enveloping cylinder of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

whose generators are parallel to the line

$$
\frac{x}{0}=\frac{y}{ \pm \sqrt{a^{2}-b^{2}}}=\frac{z}{c}
$$

meet the plane $z=0$ in circles.

SECTION B

5. Answer any four of the following:
(a) Find the orthogonal trajectories of the family of oo-axial circles

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+c=0 \tag{I0}
\end{equation*}
$$

where g is a parameter
(b) Find three solutions of

$$
\begin{equation*}
\frac{d^{2} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=0 \tag{10}
\end{equation*}
$$

which are linearly independent on every real interval,
(c) A particle moves with an acceleration which is always towards, and equal to μ divided by the distance from a fixed point 0 . If it starts from rest at a distance a from 0 , show that it will arrive at ojin time

(d) Show that the depth of the centre of pressure of the area included between the arc and the asymptote of the curve
$(r-a) \cos \theta=b$ is $\frac{a}{4} \frac{3 \pi a+16 b}{3 \pi b+4 a}$,
the asymptote being in the surface and the plane of the curve being vertical
(e) Find expressions for curvature and torsion at a point on the curve $x=a \cos \theta y=a \sin \theta, z=a$ $\theta \cot \beta$.
6. (a) Solve and examine for singular solution:
$y^{2}-2 p x y+p^{2}\left(x^{2}-1\right)=m^{2}-$
(b) Solve

$$
\begin{equation*}
x^{3} \frac{d^{3} y}{d x^{2}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right), \tag{10}
\end{equation*}
$$

(c) Given $\mathrm{y}=\mathrm{x}$ is one solutions of $\left(x^{3}+1\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$,
find another linearly independent solution by reducing order and write the general solation.
(d) Solve by the method of variation of parameters

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x, a \text { is real. } \tag{10}
\end{equation*}
$$

7. (a) A shell fired with velocity V at an elevation θ hits an airship at a height h from the ground, which is moving, horizontally away from the gun with velocity v . Show that if
$\left.(2 V \cos \theta-v)\left(u^{2} \sin ^{2} \theta-2 g h\right)^{v 2}=v V \sin \theta\right)$
the shell might have also hit the ship if the latter had remained stationary in the position it occupied when the gun was actually fired.
(b) Assuming the eccentricity e of a planet's orbit is a small fraction, show that the ratio of the time taken by the planet to travel over the balves of its orbit separated by the minor axis is nearly $1+\frac{4 e}{\pi}$
(c) A uniform rod $A B$ of length 2 a is hinged at A, a string attached to the middle point G of the rod passes over a smooth pultey at C at a height a, vertically above A , and supports a weight P having freely, find the positions of equilibrium and determine their nature as to stability or unstability
(d) A solid of cork bounded by the surface generated by the revolution of a quadrant of an ellipse about the majo axis sinks in mercury up to the focus. If the centre of gravity of the cork coincides with the metacentre, prove that $2 \mathrm{e}^{4}+4 \mathrm{e}^{3}+2 \mathrm{e}^{2}-\mathrm{e}-2=0$
8. (a) If \bar{r} is theposition vector of the point (x, y, z) with respect to the origin, prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.
Find $f(r)$ such that $\Delta^{2} f(r)=0$,
(b) If \vec{F} is solenoidal, prove that $\mathrm{Curl} \operatorname{Curl} \operatorname{Curl} \operatorname{Curl} \vec{F}=\nabla^{*} \vec{F}$
(c) Verify Stoke's Theorem when
$\overline{\mathrm{F}}=\left(2 x y-x^{2}\right) \vec{i}-\left(x^{2}-y^{2}\right) \vec{d}$
and C is the boundary of the region enclosed by the parabolas $y^{2}=x$ and $x 2=y$,
(d) Express $\nabla \times \bar{F}$ and $\nabla^{2} \Phi$ in cylindrical co-ordinates,

MATHEMATICS

PAPER - II
 SECTION A

1. Answer any four parts:
(a) Show that if every element of a group $\left(G,{ }^{*}\right)$ be its own inverse, then it is an Abelian group. Give an example to show that the converse is not true.
(b) Evaluate

$$
\mathrm{I}=\iint\left(a^{2}-x^{2}-y^{2}\right)^{1 / 2} d x d y
$$

over the positive quadrant of the circle
$x^{2}+y^{2}=a^{2}$
(c) If $\mathrm{w}=\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y}), \mathrm{z}=\mathrm{x}+\mathrm{iy}$, is analytio in a domain, show that

$$
\frac{\partial \omega}{\partial \bar{z}}=0
$$

Hence or otherwise, show that $\sin (x+i 3 y)$ cannot be analytic.
(d) Investigate the continuity of the function $f(x)=\Gamma \times \mid / x$ for $x \Rightarrow 0$ and $f(0)=-1$
(e) (i) Explain the following terms of an

LPP:

1. Solution
2. Basic solution
3. Basic feasible solution
4.

Degenerate basic solution
(ii) Give the dual of the following LFP.

Maximize $Z=2 x_{1}+3 x_{2}+x_{3}$
Subject to $4 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3}=6$
$x_{1}+2 x_{2}+3 x_{3}=4$
$x, x_{2}, x_{3} \geq 0$
(a) Let $\mathrm{G}=\{\mathrm{a} \in \mathrm{R}-1<\mathrm{a}<1)$. Define a binary operation * on G by
$a^{*} b=\frac{a+b}{1+a b}$ for all $\mathbf{a}, \mathbf{b} \in \mathbf{G}$
Show that (G, *) is a group
(b) Let $f(x)=|x|, x \in[0,3]$, where $[x]$ denotes the greatest integer not greater than x. Prove that f is Riemann integrable on $[0,3]$ and evaluate
(c) (i) Let (a, b) be any open interval, fa function defined and differentiable on (a, b) such that its derivative is bounded on (a, b). Show that f is uniformly continuous on (a, b).
(ii) If f is a continuous function on $[\mathrm{a}, \mathrm{b}]$ and if

$$
\int_{a}^{2} f^{2}(x) d x=0
$$

then show that fix $)=0$ for all x in $[\mathrm{a}, \mathrm{b}]$ Is this true if f is not continuous?

3. (a) Let R be the set of matrices of the form
$\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right), a, b \in \mathrm{~F}$
where F is a field. With usual addition and multiplication as binary operations, show that R is a commutative ring with unity, Is it a field if $\mathrm{F}=\mathrm{Z}_{2}, \mathrm{Z}_{5}$?
(b) Discuss the transformation
$w=z \mp \frac{1}{z}$
and hence, show that-
(i) a circle in z-plane is mapped on an ellipse in the w-plane;
(ii) a line in the z-plane is mapped into a hyperbola in the w-plane.
(c) Find the Laurent series expansion of the function

$$
f(z)=\frac{z^{2}-1}{(z+2)(z+3)}
$$

valid in the region $2<|z|<3$.
4. (a) Find the maximum and minimum distances of the point $(3,4,12)$ from the sphere $x^{2}+y^{2}+z^{2}$ $=1$
(b) Find the maximum value of $Z=2 x+3 y$ subject to the constraints

$$
\begin{gathered}
x-y \geq 0 \\
x+y \leq 30 \\
y \geq 3 \\
0 \leq y \leq 12 \text { and } \\
0 \leq x \leq 20
\end{gathered}
$$

by graphical method.
(c) Apply simplex method to solve the following linear programming problem-

Maximize $Z=4 x_{1}+3 x_{2}$ subject to the constraints

$$
\begin{aligned}
& 3 x_{1}+x_{2} \leq 15 \\
& 3 x_{1}+4 x_{2} \leq 24 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

SECTION B

5. Answer any four parts:
(a) Find the general solution of the partial differential equation

$$
\begin{equation*}
(m z-n y) \frac{\partial z}{\partial x}+(n x-l z) \frac{\partial z}{\partial y}=l y-m x \tag{10}
\end{equation*}
$$

(b) Find the cube root of 10 using Newton-Raphson method, correct to 4 decimal places.
(c) Apply modified Euler's method to determine y 0.1) given that
$\frac{d y}{d x}=x^{2}+y$
when $y(0)=1$.
(d) (i) Convert ABCD hex and 76543 octal to decimal
(ii) Convert 39870 decimal to octal and hexadecimal.
(e) Show that the surface
$\frac{x^{2}}{a^{2} k^{2} t}+k t^{2}\left(\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)=1$
is a possible form of boundary surface of a liquid at time t.
6. (a) Form the partial differential equation by eliminating the arbitrary function from

$$
\begin{equation*}
\left(\left(x^{2}+y^{2}, z-x y\right)=0, z=z(z, y)\right. \tag{13}
\end{equation*}
$$

(b) Solve

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial t^{2}}
$$

given that
(i) $\mathrm{u}=0$, when $\mathrm{t}=0$ for all t
(ii) $u=0$ when $x=/$ for all t
(iii) $\left.\begin{array}{ll}u=x & \operatorname{in}\left(0, \frac{1}{2}\right) \\ =1-x & \operatorname{in}\left(\frac{1}{2}, t\right)\end{array}\right\} a t=0$
(c) A rod of length 2 a is suspended by a string of length I attached to one end; if the string and rod revolve about the vertical with uniform angular velocity and their inclinations to the vertical be θ and ϕ, respectively, show that

$$
\begin{equation*}
\frac{3 l}{\alpha}=\frac{(4 \tan \theta-3 \tan \phi) \sin \theta}{(\tan \phi-\tan \theta) \sin \theta} \tag{13}
\end{equation*}
$$

7. (a) The velocities of a car running on a straight road at intervals of 2 minutes are given below:

Time (in min) : $\quad \begin{array}{lllllll}0 & 2 & 4 & 6 & 8 & 10 & 12\end{array}$
$\begin{array}{lllllllll}\text { Velocity (} \mathrm{m} \mathrm{nkm} / \mathrm{hr} \text {) }: 0 & 22 & 30 & 27 & 18 & 7 & 0\end{array}$

Apply Simpson's one-third rule to find the distance covered by the car.
(b) Consider the velocity field given by
$\vec{q}=i(1+\mathrm{At})+j x$
Find the equation of the streamline at $\mathrm{t}=\mathrm{t}_{0}$ passing through the point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. Also, obtain the equation of the path line of a flud element which comes to ($\mathrm{x}_{0}, \mathrm{y}_{0}$) at $\mathrm{t}=\mathrm{t}_{0}$. Show that, of $\mathrm{A}=0$, the streamline and path line colncide.
(c) Write a program in BASIC to integrate
$\int_{0}^{10}\left(1-e^{-\frac{x}{2}}\right) d x$
by trapezoidal rulefor 20 equal sub-divisions of the interval (0,10) Indicate which lines are to be changed for a different integral.
8. (a) Draw a flowchart and write a program in BASIC for an algorithm to determine the greatest common divisor of two given positive integers.
(b) Apply Runge-Kutta method of order 4 to find an approximate value of y when $x=0.2$ given that

$$
\begin{equation*}
\frac{d y}{d x}=x+y, y=1 \text { when } x=0 . \tag{14}
\end{equation*}
$$

(c) A uniform sphere rolls down an inclined plane rough enough to prevent any sliding, discuss the motion. Hence, show that for pure rolling μ (coefficient of friction) is greater than $\frac{2}{7}$ tan α for a solid sphere, where α the inclination of the plane.

