Candidates should attempt Question Nos. 1 and 5 which are compulsory, and any three of the remaining questions selecting at least one question from each section.

ARAM要

Section-A

1. Attempt any five of the following:
(a) Let S be the vector space of all polynomials $p(x)$, with real coefficients, of degree less than or equal to two considered over the real field IR, such that $p(0)=0$ and $p(1)=0$. Determine a basis for S and hence its dimension.
(b) Let T be the linear transformation from R^{3} to R^{4} defined by

$$
\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(2 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}, \mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{x}_{1}+\mathrm{x}_{3}, 3 \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}\right)
$$

For each $\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}$.
Determine a basic for the Null space of T . What is the dimension of the Range space of T ?
(c) Let $f(x)(x \in(x \in(-\pi, \pi)$? If it is continuous, then it is differentiable on $((-\pi, \pi)$?
(d) A figure bounded by one arch of a cy cloid
$x=a(t-\sin t), y=a(1-\cos t), t \in[0,2 \pi]$, and the x-axis is revolved about the $x-a x i s$. Find the volume of the solid of revolution.
(e) Find the focus of the point which moves so that its distance from the plane $x+y-z=1$ is twice its distance from the line $x=-y=z$.
(f) Find the equation of the sphere inscribed in the tetrahedron whose faces are $x=0, y=0, z=0$ and $2 x+3 y+6 z=6$.
2. (a) Let W be the set of all 3×3 symmetric matrices over R. Does it form a subs pace of the vector space of the 3×3 matrices over IR? In case it does, construct a basis for this space and determine its dimension.
(b) Consider the vector space
$X:=\{p(x) p(x)$ is a polynomial of degree less than or equal to 3 with real coefficients $\}$, over the real field R, Define the map D : X $\rightarrow \mathrm{X}$ by
(Dp) (x) : $\mathrm{p}_{1}+2 \mathrm{p}_{2} \mathrm{x}+3 \mathrm{p}_{3} \mathrm{x}^{2}$
where $\mathrm{p}(\mathrm{x})=\mathrm{p}_{0}+\mathrm{p}_{1} \mathrm{x}+\mathrm{p}_{2} \mathrm{x}^{2}+\mathrm{p}_{3} \mathrm{x}^{3}+$
Is D a linear transformation on X ? If it is, then construct the matrix representation for D with respect to the ordered basis $\left\{1, x, x 2, x^{3}\right\}$ for X.
(c) Reduce the quadratic form $\mathrm{q}(\mathrm{x}, \mathrm{y}, \mathrm{z}):=\mathrm{x}^{2}+2 \mathrm{y}^{2}-4 \mathrm{xz}+4 \mathrm{yz}+7 \mathrm{z}^{2}$ to canonical form. Is q positive definite?
3. (a) Find a rectangular parallelopiped of greatest volume for a given total surface area S, using Lagrange's method of multipliers.
(b) Prove that if $z=\psi(y+a x)+\psi(y-a x)$ then $a^{2} \frac{\partial^{2} z}{\partial y^{2}}-\frac{\partial^{2} z}{\partial x^{2}}=0$
for any twice differentiable φ and ψ; a is a constant.
(c) Show that $\mathrm{e}^{-\mathrm{x}} \mathrm{x}^{\mathrm{n}}$ is bounded on $[0, \infty)$ for all positive integral values of n . Using this result show that
$\int_{0}^{\infty} e^{-x} x^{n} d x$ exists.
4. (a) Show that the spheres $x^{2}+y^{2}+z^{2}-x+z-2=0$ and $3 x^{2}+3 y^{2}-8 x-10 y+8 z+14=0$ cut orthogonally. Find the centre and radius of their common circle.
(b) A line with direction ratios $2,7,-5$ is drawn to intersect the lines $\frac{x}{3}=\frac{y-1}{2}=\frac{z-2}{4}$ and $\frac{x-11}{3}=\frac{y-5}{-1}=\frac{z}{1}$

Find the coordinates of the points of intersection and the length intercepted on it.
(c) Show that the plane $2 x-y+2 z=0$ cuts the cone $x y+y z+z x=0$ in perpendicular lines.
(d) Show that the feet of the normals from the point $\mathrm{P}(\alpha, \beta, \gamma), \beta \neq 0$ on the paraboloid $\mathrm{x}^{2}+\mathrm{y}^{2}=$ $4 z$ lie on the sphere

$$
\begin{equation*}
2 \beta\left(x^{2}+y^{2}+z^{2}\right)-\left(\alpha^{2}+\beta^{2}\right) y-2 \beta(2+\gamma) z=0 \tag{15}
\end{equation*}
$$

IMS(Institute of Mathematical Sciences)
SECTION B
5. Answer any FIVE of the following:
(a) (i) Form a partial differential equation by eliminating the function f from :

$$
\begin{equation*}
z=y^{2}+2 f\left(\frac{1}{x}+\log y\right) \tag{6}
\end{equation*}
$$

(ii) Solve

$$
\begin{equation*}
2 z x-p x^{2}-2 q y x+p q=0 \tag{6}
\end{equation*}
$$

(b) Transform the equation
$y z_{x}-x z_{y}=0$
into one in polar coordinates and thereby show that the solution of the given equation represents surfaces of revolution.
(c) Use the method of false position to find a real root of $x^{3}-5 x-7=0$ lying between 2 and 3 and correct to 3 places of decimals.
(d) Convert :
(i) 46655 given to be in the decimal system into one in base 6 ,
(ii) $(11110.01)_{2}$ into a number in the decimal system.
(e) Consider a system with two degree of freedom for which
$V=q_{1}^{2}+3 q_{1} q_{2}+4 q_{2}^{2}$
Find the equilibrium position and determine if the equilibrium is stable.
(f) Show that $\left(\frac{x^{2}}{a^{2}}\right) \cos ^{2} t+\left(\frac{y^{2}}{b^{2}}\right) \sec ^{2} t=1$ is a possible form for the boundary surface of a liquid.
6. (a) Solve
$\mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=0$ in D
where $\mathrm{D}\{(\mathrm{x}, \mathrm{y}): 0<\mathrm{x}<\mathrm{a}, 0<\mathrm{y}<\mathrm{b}\}$ is a rectangle in a plane with the boundary conditions:
$u(x, 0)=0, u(x, b)=0,0 \leq x \leq a$
$u(0, y)=g(y), u_{x}(a, y)=h(y), 0 \leq y \leq b$.
7. (a) A particle is performing simple harmonic motion of period T about a centre 0 . It passes through a point $\mathrm{P}(\mathrm{OP}=\mathrm{p})$ with velocity v in the direction $O P$. Show that the time which elapses before it returns to P is

$$
\frac{T}{\pi} \tan ^{-1} \frac{v T}{2 \pi p}
$$

(b) A particle attached to a fixed peg O by a string of length 1 , is lifted up with the string horizontal and then let go. Prove that when the string makes an angle 0 with the horizontal, the resultant acceleration is $g \sqrt{\left(1+3 \sin ^{2} \theta\right)}$
(c) A uniform beam of length 1 rests with its ends on two smooth planes which intersect in a horizontal line. If the inclinations of the planes to the horizontal are α and $\beta(\beta>\alpha)$, show that the inclination θ of the beam to the horizontal, in one of the equilibrium positions, is given by
$\tan \theta=\frac{1}{2}(\cot \alpha-\cot \beta)$
\& show that the beam is unstable in this position.
(d) A cone whose vertical angle is $\frac{\pi}{3}$, has its lowest generator horizontal and is filled with a liquid. Prove that the pressure on the curved surface is $\frac{W}{2} \sqrt{19}$ where W is the weight of the liquid.
8. (a) Find the curvature and torsion at any point of the curve $x=a \cos 2 t, y=a \sin 2 t, z=2 a \sin t$.
(b) For any constant vector \vec{a}, show that the vector represented by curl $(\vec{a} \times \vec{r})$ is always parallel to the vector \vec{a}, \vec{r} being the position vector of a point ($\mathrm{x}, \mathrm{y}, \mathrm{x}$) measured from the origin.
(c) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, find the value(s) of n in order than $r^{n} \vec{r}$ may be (i) solenoidal, (ii) irrational.
(d) Determine $\int_{C}(y d x+z d y=x d z)$ by using Stroke's theorem, where C is the curve defined by $(x-a)^{2}+(y-a)^{2}+z^{2}=2 a^{2}, x+y=2 a$
that starts from the point $(2 \mathrm{a}, 0,0)$ and goes at first below the z -plane.

