Previous Years Questions (1983-2011) Segment-wise

Vector Analysis Paper - I

(According to the New Syllabus Pattern)

1983

* \quad Prove that $\operatorname{curl}(\operatorname{curl} \mathrm{F})=\operatorname{grad} \operatorname{div} \mathrm{F}-\nabla^{2} F$.

1985

* If P,Q,R are points $(3,-2,-1),(1,3,4),(2,1,-2)$ respectively. Find the distance from P to the p . O (OQR , where ' O ' is the origin.
* Find the angle between the tangents to the curve $\vec{r}=t^{2} \hat{i}-2 t \hat{j}+t^{3} \hat{k}$ at the points $\mathrm{t}=1$ and \Rightarrow
* Find div F and curl F, where $F=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$

1986

* Let \vec{a}, \vec{b} be given vectors in the three dimensional Euclidean space \vec{E} and let $\phi(x)$ be a scalar field of the vectors x also of E_{3}. If $\phi(x)=(\vec{x} \times \vec{a}) \cdot(\vec{x} \times \vec{b})$, show that $\operatorname{grad} \phi(i . e, \vee \phi(x))=\vec{b} \times(\vec{x} \times \vec{a})+\vec{a} \times(\vec{x} \times \vec{b})$.
* If \vec{f}, \vec{g} are two vector fields in E_{3} and if 'div' curp are defined on an open set $S \subset E_{3}$ show that $\operatorname{div}(\vec{f} \times \vec{g})=\vec{g} . \operatorname{curl} \vec{f}-\vec{f} . \operatorname{curl} \vec{g}$.
(1988)

1987

* Show that for a vector field \vec{f}, curl (curl $\vec{f})=\operatorname{stad}\binom{$ div }{$f}-\nabla^{2} \vec{f}$.
* If \vec{r} is the position vector to a point whose distance from the origin is r , prove that $\operatorname{div} \vec{f}=0$ if $\vec{f}=\frac{\vec{r}}{r^{3}}$.
* Prove that for a three vectors $\vec{a}, \vec{b} \cdot \vec{c} \cdot(\vec{b} \vec{c})=\vec{a}(\vec{b} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})$ and explain its geometric meaning.
(1990)

1988

* Define the divergence at, vector point function, prove that $\operatorname{div}(\vec{u} \times \vec{v})=\vec{v}$.curl $\vec{u}-\vec{u} . \operatorname{curl} \vec{v}$.
* Using Gauss divergence theorem, evaluate $\iint_{S}\left(x \hat{i}+y \hat{i}+z^{2} \hat{k}\right) \cdot \hat{n} d s$ where S is the closed surface bounded by the cone $x^{2}+y^{2}=2$ aptheplane $\mathrm{Z}=1$ and \hat{n} is the outward unit normal to S .

1989

* Define tlecurl of a vector point function
- Prove hat $\nabla \times\left(\frac{\vec{r}}{r^{2}}\right)=0$ where $\vec{r}=(x, y, z)$ and $r=|\vec{r}|$.

1991
$\%$ If ϕ be a scalar point function and F be a vector point function, show that the components of F normal and tangential to surface $\phi=0$ at any point there of are $\frac{\left(F \cdot V_{\phi}\right) V_{\phi}}{\left(\nabla_{\phi}\right)^{2}}$ and $\frac{V_{\phi \phi(~}\left(F \times V_{\phi}\right)}{\left(\nabla_{\phi}\right)}$

Institute for IAS/ IFoS/ CSIR/GATE Examinations

* Find the value of \int curl F. ds taken over the portion of the surface $x^{2}+y^{2}-2 a x+a z=0$, for which $\mathrm{Z} \geq 0$, when $F=\left(y^{2}+z^{2}-x^{2}\right) \hat{i}+\left(z^{2}+x^{2}-y^{2}\right) \hat{j}+\left(x^{2}+y^{2}-z^{2}\right) \hat{k}$

1992

* If $\vec{f}(x, y, z)=\left(y^{2}+z^{2}\right) \hat{i}+\left(z^{2}+x^{2}\right) \hat{j}+\left(x^{2}+y^{2}\right) \hat{k} \quad$ then calculate $\int_{c} \vec{f} . d \vec{x} \quad$ where ' C ' consists of the line segment from $(0,0,0)$ to $(1,1,1)$
* The three line segments AB, BC and CD , where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are respectively the points $(0,0,0)+1,0,0)(1,1,0)$ and $(1,1,1)$
* The curve $\vec{x}=u \hat{i}+u^{2} \hat{j}+u^{3} \hat{k}, u$ from 0 to 1 .
* If \vec{a} and \vec{b} are constant vectors, show that (i) $\operatorname{div}\{\vec{x} \times(\vec{a} \times \vec{x})\}=-2 \vec{x} \cdot \vec{a}$
(ii) $\operatorname{div}\{(\vec{a} \times \vec{x}) \times(\vec{b} \times \vec{x})\}=2 \vec{a} \cdot(\vec{b} \times \vec{x})-2 \vec{b} \cdot(\vec{a} \times \vec{x})$

1993

* Evaluate $\iint \nabla \times \vec{F} \cdot \hat{n} d s$, where S is the upper half surface of the unit sphere $x^{2}+z^{2}=1$ and $\vec{F}=z \hat{i}+x \hat{j}+y \hat{k}$.

1994

- If $\vec{F}=y \hat{i}+(x-2 x z) \hat{j}-x y \hat{k}$. evaluate $\iint_{s}(\nabla \times \vec{F}) \cdot \hat{n} d s$.

1996

- If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r \neq \vec{r} \mid$, show that
(i) $\vec{r} \times \operatorname{grad} f(r)=0$
(ii) $\operatorname{div}\left(r^{n} \vec{r}\right)=(n+3) r^{n}$
* Verify Gauss divergence theoremfor
$\vec{F}=x y \hat{i}+z^{2} \hat{j}+2 y z \hat{k}$, on the tettrhedron $\mathrm{x}=\mathrm{y}=\mathrm{z}=0, \mathrm{x}+\mathrm{y}+\mathrm{z}=1$

1997

* Prove that if $\vec{A} \cdot \vec{B}=\vec{C}$ and are three given non coplanar vectors, then any vector \vec{F} can be put in the form $\vec{F}=\alpha \vec{B} \times \vec{C}+\beta \vec{C} \times \vec{A}+\gamma \vec{A} \times \vec{B}$. For a given \vec{F} determine α, β, γ.

1998

* If x_{s} and x_{2} are the vectors joining the fixed points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ respectively to a variable point $\mathrm{P}(\mathrm{x}, \mathrm{y}$, Q 2 , then find the values of $\operatorname{grad}\left(r_{1} \cdot r_{2}\right)$ and curl $\left(r_{1} \times r_{2}\right)$
थ Shot that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if either $\vec{b}=0$ (or any other vector is ' 0 ') or \vec{c} is collinear with \vec{a} or \vec{b} is orthogonal to \vec{a} and \vec{c} (both).

1999

* If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors A , B, C prove that $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a vector perpendicular to the plane ABC.

Head Office: 105-106, Top Floor, Mukherjee Tower, Dr. Mukherjee Nagar, Delhi-110009. Branch Office: 25/8, Old Rajender Nagar Market, Delhi-110060

Institute for IAS/ IFoS/ CSIR/GATE Examinations

* If $\vec{F}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, find $\vee \times \vec{F}$.
* Evaluate $\int_{c}\left(e^{-x} \sin y d x+e^{-x} \cos y d y\right)$; (by Green's theorem), where ' C ' is the rectangle whose vertices are $(0,0),(\pi, 0)$ $(\pi, \pi / 2) \&(0, \pi / 2)$.
* If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the components of a contra variant vector in rectangular cartesian co-ordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in a three dinemsional space, show that the components of the vector in cylindrical co- ordinates $r, \theta, z \operatorname{are} X \cos \theta+Y \sin \theta, \frac{-X}{r} \sin \theta+\frac{r}{4} \cos \theta$

2000

* In what direction from the point $(-1,1,1)$ is the directional derivative of $f=x^{2} y z^{3}$ amaximum compute its magnitude .
* Show that
(i). $(A+B) \cdot(B+C) \times(C+A)=2 A \cdot B \times C$
(ii). $\nabla \times(A \times B)=(B . \nabla) A-B(\nabla \cdot A)-(A . \nabla) B+A(\nabla . B)$
(1990)
* Evaluate $\iint_{S} F . \hat{n} d s$ where $F=2 x y \hat{i}+y z^{2} \hat{j}+x z \hat{k}$ and S is the surface of the parallelopiped bounded by $x=0, y=0, z=0, x=2, y=1$ and $z=3$.

2001

* Find the length of the arc of the twisted curve $\vec{r}=\left(3 t, 3 t^{2}, 2 t^{3}\right)$ fonthe point $\mathrm{t}=0$ to the point $\mathrm{t}=1$. Find also the unit tangent ' t ', unit normal ' n ' and the unit binormal b at $\mathrm{t}=1$.
* Show that curl $\frac{\vec{a} \times \vec{r}}{r^{3}}=-\frac{\vec{a}}{r^{3}}+\frac{3 \vec{r}}{r^{3}}(\vec{a} \cdot \vec{r})$ where \vec{a} is a constant tector
* Find the directional derivative of $f=x^{2} y z^{3}$ along $x=y=1+2 \sin t, z=t-\cos t$ at $\mathrm{t}=0$.
* Show that the vector field defined by $F=2 x 2 \dot{i}+x^{3}+3 x^{2} y z^{2} \hat{k} \quad$ is irrotational. Find also the scalar 'u' such that $\mathrm{F}=$ grad u.
* Verify Gauss divergence theorem of $A=\left(4 \sum^{2} y^{2}, z^{2}\right)$ taken over the region bounded by $x^{2}+y^{2}=4 \quad \mathrm{z}=0$ \& $\mathrm{z}=3$.

2002

* Let \vec{R} be the unit vector along the evector $\vec{r}(t)$. show that $\vec{R} \times \frac{d \vec{R}}{d t}=\frac{\vec{r}}{r^{2}} \times \frac{d \vec{r}}{d t}$ where $r=|\vec{r}|$.
* Find the curvature K fof the spare curve $x=a \cos \theta, y=a \sin \theta, z=a \theta \tan \alpha$
* Show that curl (curi ث)
* Let D be a close and bounded region having boundary S. Further let ' f ' be a scalar function having second order partial derivatives ofted it. show that $\left.\iint_{S}(f \operatorname{grad} f) . \hat{n} d s=\iiint_{V}|\operatorname{grad}|^{2}+f V^{2} f\right] d v \quad$ Hence or otherwise evaluate $\iint(f \in r d f) \cdot \hbar d s$ for $\mathrm{f}=2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}$ over $S \equiv x^{2}+y^{2}+z^{2}=4$
* Find the values of constants a, b, and c such that the maximum value of directional derivative of $f=a x y^{2}+b y z+c x^{2} z^{2}$ at $1,: 1,1$) is in the direction parallel to y axis and has magnitude 6 .

2003

Show that if $\vec{a}^{\prime}, \vec{b}^{\prime}$ and \vec{c}^{\prime} are the reciprocals of the non - coplanar vectors \vec{a}, \vec{b} and \vec{c}, then any vector \vec{r} may be expressed as
$\vec{r}=\left(\vec{r} \cdot \vec{a}^{\prime}\right) \vec{a}+\left(\vec{r} \cdot \vec{b}^{\prime}\right) b+\left(\vec{r} . \vec{c}^{\prime}\right) c$.
Head Office: 105-106, Top Floor, Mukherjee Tower, Dr. Mukherjee Nagar, Delhi-110009. Branch Office: 25/8, Old Rajender Nagar Market, Delhi-110060

Institute for IAS/ IFoS/ CSIR/GATE Examinations

* Prove that the divergence of a vector field is invariant w. r. t co - ordinate transformations.
* Let the position vector of a particle moving on a plane curve be $\vec{r}(t)$, where t is the time. Find the components of its acceleration along the radial and transverse directions.
* Prove the identity $\nabla A^{2}=2(A . \nabla) A+2 A \times(\nabla \times A)$

Where $\nabla=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial \alpha}$.

* Find the radii of curvature and torsion at a point of intersection of the surfaces $x^{2}-y^{2}=c^{2}, y=x \tanh \left(\frac{z}{c}\right)$
* Evaluate \iint_{S} curl A.ds where S is the open surface $x^{2}+y^{2}-4 x+4 z=0, z \geq 0 \quad$ and $A=\left(y^{2}+z^{2}-x^{2}\right) \hat{i}+\left(2 z^{2}+x^{2}-y^{2}\right) \hat{j}+\left(x^{2}+y^{2}-3 z^{2}\right) \hat{k}$

2004

* Show that if \vec{A} and \vec{B} are irrotational, then $\vec{A} \times \vec{B}$ is solenoidal.
* Show that the Frenet - Serret formulae can be written in the form $\frac{d \vec{T}}{d s}=\vec{w} \times \vec{T}, \frac{d \vec{N}}{d s}=\vec{W} \times \vec{N}$ dnd $\frac{d \vec{B}}{d s} \vec{W} \times \vec{B}$

Where, $\vec{W}=\tau \vec{T}+k \vec{B}$

* Prove the identity
$\nabla(\vec{A} \cdot \vec{B})=(\vec{B} \cdot \nabla) \vec{A}+(\vec{A} \cdot \nabla) \vec{B}+\vec{B} \times(\nabla \times \vec{A})+\vec{A} \times(\nabla \times \vec{B})$
* Derive the identity
$\iiint_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d v=\iint_{S}(\phi \nabla \psi-\psi \nabla \phi) \cdot \hat{n} d s$, where V is the v lume bounded by the closed surface S .
*. Verify Stoke's theorem for $\vec{f}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z$ where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.

2005

* Show that the volume of the tetrahedren $A B C D$ is $\frac{1}{6}(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A D}$. Hence find the volume of the tetrahedron with vertices $(2,2,2),(2,0,0),(0,2,0)$ and $(0,0,2)$.
* Prove that the curl of a vector fiett is independent of the choice of co - ordinates.
* The parametric equation of circular helix is $\vec{r}=a \cos u \hat{i}+a \sin u \hat{j}+c u \hat{k}$; where ' c ' is a constant and ' u ' is a parameter.
* Find the unit tangent vector 'at the point ' u ' and the arc length measured from $u=0$. Also find $\frac{d \hat{t}}{d s}$, where ' S ' is the arc length.
* Show that $\operatorname{curl}\left(\hat{K} \times \operatorname{stg} \frac{d}{r}\right)+\operatorname{grad}\left(\hat{K} \cdot \operatorname{grad} \frac{1}{r}\right)=0$ where r is the distance from the origin and \hat{K} is the unit vector in the direction
* Find the turvature and the torsion of the space curve $x=a\left(3 u-u^{3}\right), y=3 a u^{2}, z=a\left(3 u+u^{3}\right)$.
- Evaluate $\iint\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)$ by Gauss divergence theorem, where S is the surface of the cylinde
$+a^{2}$ bounded by $\mathrm{z}=0$ and $\mathrm{z}=\mathrm{b}$.

2006

* Find the values of constant a, b, and c so that the directional of the function $f=a x y^{2}+b y z+c z^{2} x^{3}$ at the point $(1,2,-1)$ has maximum magnitude 64 in the direction parallel to $\mathrm{Z}-$ axis.
* If $\vec{A}=2 \hat{i}+\hat{k}, \vec{B}=\hat{i}+\hat{j}+\hat{k}, \vec{C}=4 \hat{i}-3 \hat{j}-7 \hat{k}$, determine a vector \vec{R} satisfying the vector equations
$\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$
* Prove that $r^{n} \vec{r}$ is an irrotational vector for any value of n , but is solenoidal only if $\mathrm{n}+3=0$.
* If the unit tangent vector \vec{t} and binormal \vec{b} makes angles θ and ϕ respectively with a constant unit vector \vec{a}, prove that $\frac{\sin \theta}{\sin \phi} \cdot \frac{d \theta}{d \phi}=-\frac{k}{\tau}$
*Verify Stoke's theorem for the function $\vec{F}=x^{2} \hat{i}-x y \hat{j}$ integrated round the square in the plane $\mathrm{z}=0$ and bemdechy the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{a}, \mathrm{a}>0$.

2007

* If \vec{r} denotes the position vector of a point and if \hat{r} be the unit vector in the direction of $\vec{r}, r=\hat{r} \hat{\rho}$ determine grad $\left(r^{-1}\right)$ in terms of \hat{r} and r .
*. Find the curvature and torsion at any point of the curve
$x=a \cos 2 t, y=a \sin 2 t, Z=2 a \sin t$
$\neq \quad$ For any constant vector \vec{a} show that the vector represented by curl $(\vec{a} \times \vec{r})$ is always parallel to the vector \vec{a}, \vec{r} being the position vector of a point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), measured from the origin.
* If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ find the value(s) of n in order that $r^{n} \vec{r}$ may be (i) sotenoidat (ii) irrotational
* Determine
$\int_{C}(y d x+z d y+x d z)$ by using Stoke's theorem, where ' C ' is the curvedefined by
$(x-a)^{2}+(y-a)^{2}+z^{2}=2 a^{2}, x+y=2 a$ that starts from thepontra, 0,0$)$ and goes at first below the $\mathrm{z}-$ plane.

2008

* Find the constants ' a ' and ' b ' so that the surface $a x^{2}=b=(a+2) x$ will be orthogonal to the surface $4 x^{2} y+z^{3}=4$ at the point $(1,-1,2)$
* Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ san conservative force field. Find the scalar potential for \vec{F} and the work done in moving an object in this field from (1 $\stackrel{-1}{ }$, 1 to $(3,1,4)$.

$$
\text { P. } T \nabla^{2} f(r)=\frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r} \text { where } r=\left(x+z^{2}\right)^{1 / 2} \text {. Hence find } \mathrm{f}(\mathrm{r}) \text { such that } \nabla^{2} f(r)=0 \text {. }
$$

* Show that for the space curve $x=y=t^{7}, z=\frac{2}{3} t^{3}$ the curvature and torsion are same at every point.
* Evaluate $\int \vec{A} \cdot d \vec{r}$ along the carve. $x^{2}+y^{2}=1, z=1$ from $(0,1,1)$ to $(1,0,1)$ if $\vec{A}=(y z+2 x) \hat{i}+x z \hat{j}+(x y+2 z) \hat{k}$.
- Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d s$ whete $\vec{E}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ and 'S' is the surface of the cylinder bounded by $x^{2}+y^{2}=4, \mathrm{z}=0$ and $\mathrm{z}=3$.

2009

* Showfhat div(grad $\left.r^{n}\right)=n(n+1) r^{n 2}$

Where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.

* Find ue directional derivatives of -
(i) $x z^{3}-3 x^{2} y^{2} z^{2}$ at ($2,-1,2$) along $\mathrm{z}-$ axis;
(ii) $x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$.
- Find the work done in moving the particle once round the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, z=0$ under the field of force given by
$\vec{F}=(2 x-y+z) \hat{i}+\left(x+y-z^{2}\right) \hat{j}+(3 x-2 y+4 z) \hat{k}$.
* Using divergence theorem, evaluate

Head Office: 105-106, Top Floor, Mukherjee Tower, Dr. Mukherjee Nagar, Delhi-110009. Branch Office: 25/8, Old Rajender Nagar Market, Delhi-110060
$\iint_{S} \vec{A} . d \vec{S} \quad$ where $\vec{A}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

* Find the value of $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot d \vec{S}$
taken over the upper portion of the surface $x^{2}+y^{2}-2 a x+a z=0$ and the bounding curve lies in the plane $\mathrm{z}=0$, when $\vec{F}=\left(y^{2}+z^{2}-x^{2}\right) \hat{i}+\left(z^{2}+x^{2}-y^{2}\right) \hat{j}+\left(x^{2}+y^{2}-z^{2}\right) \hat{k}$.

2010

* Find the directional derivative of $f(x, y)=x^{2} y^{3}+x y$ at the point $(2,1)$ in the direction of a unit yector thich makes an angle of $\pi / 3$ with the $x-$ axis.
* Show that the vector field defined by the vector function $\vec{V}=x y z(y z \vec{i}+x z \vec{j}+x y \vec{k})$ is conservatie
* Prove that $\operatorname{div}(f \vec{v})=f(\operatorname{div} \vec{v})+(\operatorname{grad} f) \vec{v} \quad$ where f is a scalar function.
* Use the divergence theorem to evaluate $\iint_{S} \vec{V} \cdot \vec{n} d A \quad$ where $\vec{V}=x^{2} z \vec{i}+y \vec{j}-x z^{2} \vec{k}$ and S is the boundary of the region bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $\mathrm{z}=4 \mathrm{y}$.
(20)
* Verify Green's theorem for ;
$e^{-x} \sin y d x+e^{-x} \cos y d y \quad$ the path of integration being the boundary of he square whose vertices are $(0,0),(\pi / 2,0),(\pi / 2$, $\pi / 2)$ and $(0, \pi / 2)$.

2011

* For two vectors \vec{a} and \vec{b} given respectively by $\vec{a}=5 t^{2} \hat{i}+\hat{q}-\vec{t} \hat{\sin } \vec{b} \vec{b}=\sin t \hat{i}-\cos t \hat{j}$

Determine: $(i) \frac{d}{d t}(\vec{a} \cdot \vec{b})$ and $(i i) \frac{d}{d t}(\vec{a} \times \vec{b})$

* If u and v are two scalar fields and \vec{f} is a vector fieldsueth that $u \vec{f}=\operatorname{grad} v$, find the value of $\vec{f} \cdot \operatorname{curl} \vec{f}$

Examine whether the vectors $\nabla u, \nabla v$ and rare eoplanar, where u, v and w are the scalar functions defined by: $\mathrm{u}=\mathrm{x}+\mathrm{y}+$ $\mathrm{z}, v=x^{2}+y^{2}+z^{2}$ and $\mathrm{w}=\mathrm{yz}+\mathrm{zx}+\mathrm{xy}$.

- If $\vec{u}=4 y \hat{i}+x \hat{j}-2 z \hat{k}$, calculate the doutje integral $\iint(\nabla \times \vec{u}) \cdot d \vec{s}$ over the hemisphere given by $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$.
* If \vec{r} be the position vector of a point, find the value(s) of n for which the vector $r^{n} \vec{r}$ is (i) irrotational, (ii) solenoidal.
* Verify Gauss Divergence. Theorem for the vector $\vec{v}=x^{2} \hat{i}+y^{2} \hat{j}-z^{2} \hat{k}$ taken over the cube $0 \leq x, y, z \leq 1$.

