

Previous Years Questions (1983-2011) Segment-wise

Vector Analysis Paper – I

(According to the New Syllabus Pattern)

• Prove that curl (curl F) = grad div F - $\nabla^2 F$.

1985

- ❖ If P,Q,R are points (3,-2,-1), (1,3,4), (2,1,-2) respectively. Find the distance from P to the plane OQR, where 'O' is the origin.
- Find the angle between the tangents to the curve $\vec{r} = t^2 \hat{i} 2t \hat{j} + t^3 \hat{k}$ at the points t=1 and
- Find div F and curl F, where $F = \nabla(x^3 + y^3 + z^3 3xyz)$

1986

- Let \vec{a}, \vec{b} be given vectors in the three dimensional Euclidean space \vec{E} and let $\phi(x)$ be a scalar field of the vectors x also of E_3 . If $\phi(x) = (\vec{x} \times \vec{a}).(\vec{x} \times \vec{b})$, show that grad $\phi(i.e, \nabla \phi(x)) = \vec{b} \times (\vec{x} \times \vec{a}) + \vec{a} \times (\vec{x} \times \vec{b})$.
- ❖ If \vec{f} , \vec{g} are two vector fields in E_3 and if 'div', carl are defined on an open set $S \subset E_3$ show that $div(\vec{f} \times \vec{g}) = \vec{g}$. $curl \vec{f} \vec{f}$. $curl \vec{g}$. (1988)

1987

- Show that for a vector field \vec{f} , curl (curl \vec{f}) = and (div \vec{f}) $\nabla^2 \vec{f}$.
- If \vec{r} is the position vector to a point whose distance from the origin is r, prove that $div \vec{f} = 0$ if $\vec{f} = \frac{\vec{r}}{3}$.
- Prove that for a three vectors \vec{a} , \vec{b} , \vec{c} \vec{b} \vec{c} | $= \vec{a} (\vec{b} \cdot \vec{c}) \vec{c} (\vec{a} \vec{b})$ and explain its geometric meaning. (1990)

1988

- Define the divergence of a vector point function, prove that $div(\vec{u} \times \vec{v}) = \vec{v}.curl \vec{u} \vec{u}.curl \vec{v}$. (1986)
- Using Gauss divergence theorem, evaluate $\iint_S (x\hat{i} + y\hat{i} + z^2 \hat{k}).\hat{n} ds$ where S is the closed surface bounded by the cone $x^2 + y^2 = 2$ and the plane Z=1 and \hat{n} is the outward unit normal to S.

1989

- Define the curl of a vector point function
- Prove that $\nabla \times (\frac{\vec{r}}{r^2}) = 0$ where $\vec{r} = (x, y, z)$ and $r = |\vec{r}|$.

1991

• If ϕ be a scalar point function and F be a vector point function, show that the components of F normal and tangential to surface $\phi = 0$ at any point there of are $\frac{(F,V\phi)V\phi}{(\nabla\phi)^2}$ and $\frac{V\phi \times (F,V,V\phi)}{(\nabla\phi)^2}$

Head Office: 105-106, Top Floor, Mukherjee Tower, Dr. Mukherjee Nagar, Delhi-110009. *Branch Office*: 25/8, Old Rajender Nagar Market, Delhi-110060 Ph:.01145629987, 09999329111, 09999197625

Institute for IAS/ IFoS/ CSIR/GATE Examinations

Find the value of $\int \text{curl F. ds}$ taken over the portion of the surface $x^2 + y^2 - 2ax + az = 0$, for which $Z \ge 0$, when $F = (y^2 + z^2 - x^2) \hat{i} + (z^2 + x^2 - y^2) \hat{j} + (x^2 + y^2 - z^2) \hat{k}$.

1992

- $\text{ If } \vec{f}(x,y,z) = (y^2 + z^2) \, \hat{i} + (z^2 + x^2) \, \hat{j} + (x^2 + y^2) \hat{k}$ then calculate $\int_{c} \vec{f} \, d\vec{x}$ where 'C' consists of the line segment from (0,0,0) to (1,1,1)
- The three line segments AB,BC and CD, where A,B,C and D are respectively the points (0,0,0) (1,1,0) and (1,1,1)
- The curve $\vec{x} = u\hat{i} + u^2\hat{j} + u^3\hat{k}$, u from 0 to 1.

1993

Evaluate $\iint \nabla \times \vec{F} \cdot \hat{n} \, ds$, where S is the upper half surface of the unit sphere $x^2 + y + z^2 = 1$ and $\vec{F} = z\hat{i} + x\hat{j} + y\hat{k}$.

1994

1996

- If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, show that
 - (i) $\vec{r} \times grad f(r) = 0$
 - (ii) $div(r^n\vec{r}) = (n+3)r^n$
- Verify Gauss divergence theorem for $\vec{F} = xy\hat{i} + z^2\hat{j} + 2yz\hat{k}$, on the tetrahedron x = y = z = 0, x + y + z = 1

1997

Prove that if \vec{A} , \vec{B} and \vec{C} are three given non coplanar vectors, then any vector \vec{F} can be put in the form $\vec{F} = \alpha \vec{B} \times \vec{C} + \beta \vec{C} \times \vec{A} + \gamma \vec{A} \times \vec{B}$. For a given \vec{F} determine α , β , γ .

1998

- If r_1 and r_2 are the vectors joining the fixed points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ respectively to a variable point P (x, y, x₂), then find the values of grad $(r_1 \cdot r_2)$ and curl $(r_1 \times r_2)$
- Show that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if either $\vec{b} = 0$ (or any other vector is '0') or \vec{c} is collinear with \vec{a} or \vec{b} is orthogonal to \vec{a} and \vec{c} (both).

1999

• If \vec{a} , \vec{b} , \vec{c} are the position vectors A,B, C prove that $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is a vector perpendicular to the plane ABC.

Head Office: 105-106, Top Floor, Mukherjee Tower, Dr. Mukherjee Nagar, Delhi-110009. *Branch Office*: 25/8, Old Rajender Nagar Market, Delhi-110060 Ph:.01145629987, 09999329111, 09999197625

Institute for IAS/ IFoS/ CSIR/GATE Examinations

- If $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$, find $\nabla \times \vec{F}$.
- Evaluate $\int_{c} (e^{-x} \sin y \, dx + e^{-x} \cos y \, dy)$; (by Green's theorem), where 'C' is the rectangle whose vertices are (0,0), $(\pi,0)$ $(\pi,\pi/2) & (0,\pi/2)$.
- If x, y, z are the components of a contra variant vector in rectangular cartesian co-ordinates x,y,z in a three dimensional space, show that the components of the vector in cylindrical co-ordinates r, θ, z are $X \cos \theta + Y \sin \theta, \frac{-x}{r} \sin \theta + \frac{y}{r} \cos \theta = \frac{x}{r} \sin \theta$

2000

- In what direction from the point (-1, 1, 1) is the directional derivative of $f = x^2yz^3$ a maximum? compute its magnitude.
- Show that

(i). $(A+B).(B+C)\times(C+A) = 2A.B\times C$

(ii). $\nabla \times (A \times B) = (B \cdot \nabla)A - B(\nabla \cdot A) - (A \cdot \nabla)B + A(\nabla \cdot B)$

(1990)

Evaluate $\iint_S F \cdot \hat{n} ds$ where $F = 2xy\hat{i} + yz^2\hat{j} + xz\hat{k}$ and S is the surface of the parallelopiped bounded by x = 0, y = 0, z = 0, x = 2, y = 1 and z = 3.

2001

- Find the length of the arc of the twisted curve $\vec{r} = (3t, 3t^2, 2t^3)$ from the point t = 0 to the point t = 1. Find also the unit tangent 't', unit normal 'n' and the unit binormal b at t = 1.
- Show that curl $\frac{\vec{a} \times \vec{r}}{r^3} = -\frac{\vec{a}}{r^3} + \frac{3\vec{r}}{r^5} (\vec{a} \cdot \vec{r})$ where \vec{a} is a constant vector
- Find the directional derivative of $f = x^2yz^3$ along $y = x^2y = 1 + 2\sin t$, $z = t \cos t$ at t = 0.
- Show that the vector field defined by $F = 2xy^2 \hat{i} + x^3 \hat{j} + 3x^2 yz^2 \hat{k}$ is irrotational. Find also the scalar 'u' such that F = grad u.
- Verify Gauss divergence theorem of $A = (4x 2y^2, z^2)$ taken over the region bounded by $x^2 + y^2 = 4$ z = 0 & z = 3.

2002

- Let \vec{R} be the unit vector along the vector $\vec{r}(t)$. show that $\vec{R} \times \frac{d\vec{R}}{dt} = \frac{\vec{r}}{r^2} \times \frac{d\vec{r}}{dt}$ where $r = |\vec{r}|$.
- Find the curvature K for the space curve $x = a \cos \theta$, $y = a \sin \theta$, $z = a \theta \tan \alpha$
- Show that curl (curl \vec{v}) and ($div\vec{v}$) $\nabla^2 \vec{v}$
- Let D be a closed and bounded region having boundary S. Further let 'f' be a scalar function having second order partial derivatives defined on it. show that $\iint_{S} (f \operatorname{grad} f) . \hat{n} ds = \iiint_{V} [|\operatorname{grad}|^{2} + f V^{2} f] dv$ Hence or otherwise evaluate $\iint_{S} (f \operatorname{grad} f) . \hat{n} ds$ for f = 2x + y + 2z over $S = x^{2} + y^{2} + z^{2} = 4$
- Find the values of constants a, b, and c such that the maximum value of directional derivative of $f = ax y^2 + byz + cx^2z^2$ at (1, 1, 1) is in the direction parallel to y axis and has magnitude 6.

2003

Show that if \vec{a}', \vec{b}' and \vec{c}' are the reciprocals of the non – coplanar vectors \vec{a}, \vec{b} and \vec{c} , then any vector \vec{r} may be expressed as

 $\vec{r} = (\vec{r}.\vec{a}')\vec{a} + (\vec{r}.\vec{b}')b + (\vec{r}.\vec{c}')c.$

Head Office: 105-106, Top Floor, Mukherjee Tower, Dr. Mukherjee Nagar, Delhi-110009. *Branch Office*: 25/8, Old Rajender Nagar Market, Delhi-110060 Ph:.01145629987, 09999329111, 09999197625

Institute for IAS/ IFoS/ CSIR/GATE Examinations

- Prove that the divergence of a vector field is invariant w. r. t co ordinate transformations.
- Let the position vector of a particle moving on a plane curve be $\vec{r}(t)$, where t is the time. Find the components of its acceleration along the radial and transverse directions.
- Prove the identity $\nabla A^2 = 2(A.\nabla) A + 2A \times (\nabla \times A)$ Where $\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial x} + \hat{k} \frac{\partial}{\partial x}$.
- Find the radii of curvature and torsion at a point of intersection of the surfaces $x^2 y^2 = c^2$, $y = x \tanh(\frac{z}{c})$
- Evaluate $\iint_{S} curl \ A.ds$ where S is the open surface $x^{2} + y^{2} 4x + 4z = 0, \ z \ge 0 \quad \text{and} \ A = (y^{2} + z^{2} x^{2})\hat{i} + (2z^{2} + x^{2} y^{2})\hat{j} + (x^{2} + y^{2} 3z^{2})\hat{k}$

- Show that if \vec{A} and \vec{B} are irrotational, then $\vec{A} \times \vec{B}$ is solenoidal.
- Show that the Frenet Serret formulae can be written in the form $\frac{d\vec{l}}{ds} = \vec{W} \times \vec{T}$, $\frac{d\vec{N}}{ds} = \vec{W} \times \vec{N}$ and $\frac{d\vec{B}}{ds} \vec{W} \times \vec{B}$ Where, $\vec{W} = \tau \vec{T} + k \vec{B}$
- Prove the identity $\nabla (\vec{A} \cdot \vec{B}) = (\vec{B} \cdot \nabla) \vec{A} + (\vec{A} \cdot \nabla) \vec{B} + \vec{B} \times (\nabla \times \vec{A}) + \vec{A} \times (\nabla \times \vec{B})$
- Derive the identity $\iiint_V (\phi \nabla^2 \psi \psi \nabla^2 \phi) dv = \iint_S (\phi \nabla \psi \psi \nabla \phi) \cdot \hat{n} ds, \text{ where V is the volume bounded by the closed surface S.}$
- Verify Stoke's theorem for $\vec{f} = (2x y)\hat{i} yz^2\hat{j} y^2z$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.

2005

- Show that the volume of the tetrahedron ABCD is $\frac{1}{6}(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}$. Hence find the volume of the tetrahedron with vertices (2, 2, 2), (2, 0, 0), (0, 2, 0) and (0, 2).
- ❖ Prove that the curl of a vector field is independent of the choice of co − ordinates.
- The parametric equation of a circular helix is $\vec{r} = a\cos u\hat{i} + a\sin u\hat{j} + cu\hat{k}$; where 'c' is a constant and 'u' is a parameter.
- Find the unit tangent vector k at the point 'u' and the arc length measured from u = 0. Also find $\frac{di}{ds}$, where 'S' is the arc length.
- Show that $curl(\hat{K} \times grad \frac{1}{r}) + grad(\hat{K} \cdot grad \frac{1}{r}) = 0$ where r is the distance from the origin and \hat{K} is the unit vector in the direction oz.
- Find the curvature and the torsion of the space curve $x = a(3u u^3)$, $y = 3au^2$, $z = a(3u + u^3)$.
- Evaluate $\iint_S (x^3 dy dz + x^2 y dz dx + x^2 z dx dy)$ by Gauss divergence theorem, where S is the surface of the cylinde $z = a^2$ bounded by z = 0 and z = b.

2006

- Find the values of constant a, b, and c so that the directional of the function $f = axy^2 + byz + cz^2x^3$ at the point (1, 2, -1) has maximum magnitude 64 in the direction parallel to Z axis.
- If $\vec{A} = 2\hat{i} + \hat{k}$, $\vec{B} = \hat{i} + \hat{j} + \hat{k}$, $\vec{C} = 4\hat{i} 3\hat{j} 7\hat{k}$, determine a vector \vec{R} satisfying the vector equations

Head Office: 105-106, Top Floor, Mukherjee Tower, Dr. Mukherjee Nagar, Delhi-110009. *Branch Office*: 25/8, Old Rajender Nagar Market, Delhi-110060 Ph:.01145629987, 09999329111, 09999197625

Institute for IAS/ IFoS/ CSIR/GATE Examinations

 $\vec{R} \times \vec{B} = \vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A} = 0$

- Prove that $r^n \vec{r}$ is an irrotational vector for any value of n, but is solenoidal only if n + 3 = 0.
- If the unit tangent vector \vec{t} and binormal \vec{b} makes angles θ and ϕ respectively with a constant unit vector \vec{a} , prove that $\frac{Sin\theta}{Sin\theta} \cdot \frac{d\theta}{d\theta} = -\frac{k}{\tau}$
- Verify Stoke's theorem for the function $\vec{F} = x^2 \hat{i} xy \hat{j}$ integrated round the square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a and y = a, a > 0.

2007

- If \vec{r} denotes the position vector of a point and if \hat{r} be the unit vector in the direction of \vec{r} , $r = \vec{r}$ determine grad (r^{-1}) in terms of \hat{r} and r.
- Find the curvature and torsion at any point of the curve $x = a\cos 2t$, $y = a\sin 2t$, $Z = 2a\sin t$
- For any constant vector \vec{a} show that the vector represented by curl $(\vec{a} \times \vec{r})$ is always parallel to the vector \vec{a} , \vec{r} being the position vector of a point (x, y, z), measured from the origin.
- If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ find the value(s) of n in order that $\vec{r}''\vec{r}$ may be (i) solenoidal (ii) irrotational
- Determine

 $\int_{C} (y dx + z dy + x dz)$ by using Stoke's theorem, where 'C' is the curve defined by

 $(x-a)^2 + (y-a)^2 + z^2 = 2a^2$, x + y = 2a that starts from the point (2a, 0, 0) and goes at first below the z – plane.

2008

- Find the constants 'a' and 'b' so that the surface ax^2 by a = (a+2)x will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2)
- Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ (so a conservative force field. Find the scalar potential for \vec{F} and the work done in moving an object in this field from (1, 2, 1) to (3, 1, 4).

 $P.T \nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$ where $r = (1 + \frac{1}{r})^{\frac{1}{2}}$. Hence find f(r) such that $\nabla^2 f(r) = 0$.

- Show that for the space curve $y = t^3$, $z = \frac{2}{3}t^3$ the curvature and torsion are same at every point.
- Evaluate $\int \vec{A} d\vec{r}$ along the curve $x + y^2 = 1$, z = 1 from (0, 1, 1) to (1, 0, 1) if $\vec{A} = (yz + 2x) \hat{i} + xz \hat{j} + (xy + 2z)\hat{k}$.
- Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 4x\hat{i} 2y^2\hat{j} + z^2\hat{k}$ and 'S' is the surface of the cylinder bounded by $x^2 + y^2 = 4$, z = 0 and z = 3.

2009

Show that $div(grad r^n) = n(n+1)r^{n-2}$

Where
$$r = \sqrt{x^2 + y^2 + z^2}$$
. (12)

❖ ■ Find the directional derivatives of –

(1)
$$4xz^3 - 3x^2y^2z^2$$
 at (2, -1, 2) along z – axis;

(12)
$$\vec{x}$$
 $\vec{y}z + 4xz^2$ at $(1, -2, 1)$ in the direction of $(2\hat{i} - \hat{j} - 2\hat{k})$.

- Find the work done in moving the particle once round the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, z = 0 under the field of force given by $\vec{F} = (2x y + z)\hat{i} + (x + y z^2)\hat{j} + (3x 2y + 4z)\hat{k}$. (20)
- Using divergence theorem, evaluate

Head Office: 105-106, Top Floor, Mukherjee Tower, Dr. Mukherjee Nagar, Delhi-110009. *Branch Office*: 25/8, Old Rajender Nagar Market, Delhi-110060 Ph:.01145629987, 09999329111, 09999197625

Institute for IAS/ IFoS/ CSIR/GATE Examinations

 $\iint_{S} \vec{A} \cdot d\vec{S} \quad \text{where } \vec{A} = x^{3} \hat{i} + y^{3} \hat{j} + z^{3} \hat{k} \quad \text{and S is the surface of the sphere } x^{2} + y^{2} + z^{2} = a^{2}.$ (20)

- Find the value of $\iint_{S} (\vec{\nabla} \times \vec{F}) \cdot d\vec{S}$
 - taken over the upper portion of the surface $x^2 + y^2 2ax + az = 0$ and the bounding curve lies in the plane z = 0, when $\vec{F} = (y^2 + z^2 x^2)\hat{i} + (z^2 + x^2 y^2)\hat{j} + (x^2 + y^2 z^2)\hat{k}$.

2010

- Find the directional derivative of $f(x,y) = x^2y^3 + xy$ at the point (2, 1) in the direction of a unit vector which makes an angle of $\pi/3$ with the x axis. (12)
- Show that the vector field defined by the vector function $\vec{V} = xyz(yz \vec{i} + xz \vec{j} + xy \vec{k})$ is conservative. (12)
- Prove that $div(f\vec{v}) = f(div\vec{v}) + (grad f)\vec{v}$ where f is a scalar function.
- Use the divergence theorem to evaluate $\iint_{S} \vec{V} \cdot \vec{n} \, dA$ where $\vec{V} = x^2 z \vec{i} + y \vec{j} xz^2 \vec{k}$ and is the boundary of the region
 - bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4y. (20)
- Verify Green's theorem for; $e^{-x} \sin y \, dx + e^{-x} \cos y \, dy$ the path of integration being the boundary of the square whose vertices are $(0, 0), (\pi/2, 0), (\pi/2, \pi/2)$ and $(0, \pi/2)$.

2011

- For two vectors \vec{a} and \vec{b} given respectively by $\vec{a} = 5t^2\hat{i} + \hat{q} + 3\hat{k}$ and $\vec{b} = \sin t\hat{i} \cos t\hat{j}$ Determine: $(i)\frac{d}{dt}(\vec{a} \cdot \vec{b})$ and $(ii)\frac{d}{dt}(\vec{a} \times \vec{b})$
- If u and v are two scalar fields and \vec{f} is a vector field, such that $u\vec{f} = grad v$, find the value of $\vec{f} \cdot curl \vec{f}$
- Examine whether the vectors ∇u , ∇v and ∇v are coplanar, where u, v and w are the scalar functions defined by: u=x +y + z, $v = x^2 + y^2 + z^2$ and w= yz + zx + xx. (15)
- If $\vec{u} = 4y\hat{i} + x\hat{j} 2z\hat{k}$, calculate the double integral $\iint (\nabla \times \vec{u}) \cdot d\vec{s}$ over the hemisphere given by $x^2 + y^2 + z^2 = a^2, z \ge 0$.

 (15)
- \bullet If \vec{r} be the position vector of a point, find the value(s) of n for which the vector $r^n \vec{r}$ is (i) irrotational, (ii) solenoidal. (15)
- Verify Gauss Divergence Theorem for the vector $\vec{v} = x^2 \hat{i} + y^2 \hat{j} z^2 \hat{k}$ taken over the cube $0 \le x, y, z \le 1$. (15)

Head Office: 105-106, Top Floor, Mukherjee Tower, Dr. Mukherjee Nagar, Delhi-110009. **Branch Office:** 25/8, Old Rajender Nagar Market, Delhi-110060 **Ph:.01145629987, 09999329111, 09999197625**

Email:ims4ims2010@gmail.com, www.ims4maths.com

(20)