Previous Years Questions (1983-2011) Segment-wise

Ordinary Difierential Equations and Laplace Tansforms

(According to the New Syllabus Pattern) Paper - I

1983

Solve $x \frac{d^{2} y}{d x}+(x-1) \frac{d y}{d x}-y=x^{2}$.
Solve $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$.
Solve the equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=t$ by the method of Laplace transform, given that $\mathrm{y}=-3$ when $\mathrm{t}=0$, y $=-1$ when $\mathrm{t}=1$.

1984

Solve $\frac{d^{2} y}{d x^{2}}+\mathrm{y}=\sec \mathrm{x}$.
Using the transformation $y=\frac{u}{x^{k}}$, solve the equation $x y^{\prime \prime}+(1+2 \mathrm{k}) y^{\prime}+\mathrm{xy}=0$.
\checkmark Solve the equation $\left(D^{2}+1\right) x=t \cos 2 t$, given that $x_{0}=x_{1}=0$ by the method of Laplace transform.

1985

v Consider the equation $y^{\prime}+5 y=2$. Find that solution ϕ of the equation which satisfies $\phi(1)=3 \phi^{\prime}(0)$.
\checkmark Use Laplace transform to solve the differential equation $x^{\prime \prime}-2 x^{\prime}+x=e^{t},\left('=\frac{d}{d t}\right)$ such that $x(0)=2, x^{\prime}(0)=-1$.
\checkmark For two functions f, g both absolutely integrable on $(-\infty, \infty)$, define the convolution $\mathrm{f} * \mathrm{~g}$.
If $\mathrm{L}(\mathrm{f}), \mathrm{L}(\mathrm{g})$ are the Laplace transforms of f, g show that $\mathrm{L}(\mathrm{f} * \mathrm{~g})=\mathrm{L}(\mathrm{f}) . \mathrm{L}(\mathrm{g})$.
\checkmark Find the Laplace transform of the function
$f(t)=\left\{\begin{array}{rl}1 & 2 n \pi \leq t<(2 n+1) \pi \\ -1 & (2 \mathrm{n}+1) \pi \leq \mathrm{t} \leq(2 \mathrm{n}+2) \pi\end{array}\right.$
$\mathrm{n}=0,1,2, \ldots \ldots$.

1987
\checkmark Solve the equation $x \frac{d^{2} y}{d x^{2}}+(1-\mathrm{x}) \frac{d y}{d x}=\mathrm{y}+\mathrm{e}^{\mathrm{x}}$
v If $f(t)=t^{p-1}, g(t)=t^{q-1}$ for $\mathrm{t}>0$ but $\mathrm{f}(\mathrm{t})=\mathrm{g}(\mathrm{t})=0$ for $t \leq 0$, and $\mathrm{h}(\mathrm{t})=\mathrm{f} * \mathrm{~g}$, the convolution of f, g show that and p, q are

$$
h(t)=\frac{\Gamma(p) \mp(q)}{\Gamma(p+q)} t^{p+q-1} ; t \geq 0
$$

positive constants. Hence deduce the formula $B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}$.

1988

Solve the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=2 \mathrm{e}^{\mathrm{x}} \sin$ x.
v Show that the equation $(12 x+7 y+1) d x+(7 x+4 y+1)$ dy $=0$ represents a family of curves having as asymptotes the lines $3 x+2 y-1=0,2 x+y+1=0$.
\vee Obtain the differential equation of all circles in a plane n the form $\frac{d^{3} y}{d x^{3}}\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}-3 \frac{d y}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=0$.

1989

v Find the value of y which satisfies the equation $\left(\mathrm{xy}^{2}-\right.$ $\left.\mathrm{y}^{3}-\mathrm{x}^{2} \mathrm{e}^{\mathrm{x}}\right)+3 \mathrm{xy}^{2} \frac{d y}{d x}=0$; given that $\mathrm{y}=1$ when $\mathrm{x}=1$.
v Prove that the differential equation of all parabolas lying in a plane is $\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)^{-2 / 3}=0$.
\checkmark Solve the differential equation $\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}=1+x^{2}$.

1990

(a) If the equation $\lambda^{n}+a_{1} \lambda^{n-1}+$ \qquad $+a_{n}=0$ (in unknown λ) has distinct roots $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$. Show that the constant coefficients of differential equation $\frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots \ldots \ldots \ldots . .+\mathrm{a}_{\mathrm{n}-1} \frac{d y}{d x}+a_{n}=b$ has the most general solution of the form
$\mathrm{y}=\mathrm{c}_{0}(\mathrm{x})+\mathrm{c}_{1} \mathrm{e}^{\lambda_{1} \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{\lambda_{2} \mathrm{x}}+$ \qquad $+c_{n} e^{\lambda_{n} x}$.
where $\mathrm{c}_{1}, \mathrm{c}_{2} \ldots \ldots . \mathrm{c}_{\mathrm{n}}$ are parameters. what is $\mathrm{c}_{0}(\mathrm{x})$?
v (b) Analyse the situation where the λ - equation in (a) has repeated roots.
v Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+y=0$ is explicit form. If your answer contains imaginary quantities, recast it in a form free of those.

Show that if the function $\frac{1}{t-f(t)}$ can be integrated (w.r.t ' t '), then one can solve $\frac{d y}{d x}=f(1 / x)$, for any given f. Hence or otherwise.
$\frac{d y}{d x}+\frac{x-3 y+2}{3 x-y+6}=0$
v Verify that $\mathrm{y}=\left(\sin ^{-1} \mathrm{x}\right)^{2}$ is a solution of $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}$ $-x \frac{d y}{d x}=2$. Find also the most general solution.

1991

If the equation $M d x+N d y=0$ is of the form $f_{1}(x y)$. $y d x+\mathrm{f}_{2}(x y) . x d y=0$, then show that $\frac{1}{M x-N y}$ is an integrating factor provided $\mathrm{Mx}-\mathrm{Ny} \neq 0$.
v Solve the differential equation.
$\left(x^{2}-2 x+2 y^{2}\right) d x+2 x y d y=0$.
v Given that the differential equation $\left(2 x^{2} y^{2}+y\right) d x-$ $\left(x^{3} y-3 x\right) d y=0$ has an integrating factor of the form $x^{k} y^{k}$, find its general solution.
Solve $\frac{d^{4} y}{d x^{4}}-m^{4} y=\sin m x$.
Solve the differential equation $\frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}+5 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+4 y=e^{x}$.
v Solve the differential equation $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}-5 y=x e^{-x}$, given that $\mathrm{y}=0$ and $\frac{d y}{d x}=0$, when $\mathrm{x}=0$.

1992

v By eliminating the constants a , b obtain the differential equation of which $x y=a e^{x}+b e^{-x}+x^{2}$ is a solution.
v Find the orthogonal trajectories of the family of semicubical parabolas $\mathrm{ay}^{2}=\mathrm{x}^{3}$, where a is a variable parameter.
v Show that $(4 x+3 y+1) d x+(3 x+2 y+1) d y=0$ represents hyperbolas having the following lines as asymptotes
$x+y=0,2 x+y+1=0$.
(1998)
v Solve the following differential equation $y(1+x y)$ $d x+x(1-x y) d y=0$,
v Solve the following differential equation $\left(D^{2}+4\right) y=$ $\sin 2 \mathrm{x}$ given that when $\mathrm{x}=0$ then $\mathrm{y}=0$ and $\frac{d y}{d x}=2$.
v Solve $\left(D^{3}-1\right) y=x e^{x}+\cos ^{2} x$.
v Solve $\left(x^{2} D^{2}+x D-4\right) y=x^{2}$.

1993

Show that the system of confocal conics $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1$ is self orthogonal.
v Solve $\left\{y\left(1+\frac{1}{x}\right)+\cos y\right\} d x+\{x+\log x-x \sin y\}$ $d y=0$.
\vee Solve $\frac{d^{2} y}{d x^{2}}+w_{0}^{2} y=$ a coswt and discuss the nature of solution as $w \rightarrow w_{0}$.
$v \quad$ Solve $\left(\mathbf{D}^{4}+\mathrm{D}^{2}+1\right) \mathrm{y}=e^{-3 / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)$.

1994

v Solve $\frac{d y}{d x}+\mathrm{x} \sin 2 \mathrm{y}=\mathrm{x}^{3} \cos ^{2} \mathrm{y}$.
v Show that if $\frac{1}{\mathrm{Q}}\left(\frac{\partial P}{\partial y}-\frac{\partial \mathrm{Q}}{\partial x}\right)$ is a function of x only say, $\mathrm{f}(\mathrm{x})$, then $F(x)=e^{\int f(x) d x}$ is an integrating factor of $\mathrm{Pdx}+\mathrm{Qdy}=0$.

Find the family of curves whose tangent form angle $\pi / 4$ with the hyperbola $\mathrm{xy}=\mathrm{c}$.
v Transform the differential equation
$\frac{d^{2} y}{d x^{2}} \cos x+\frac{d y}{d x} \sin x-2 y \cos ^{3} x=2 \cos ^{5} x$ into one having z an independent variable where $\mathrm{z}=\sin \mathrm{x}$ and solve it.

If $\frac{d^{2} x}{d t^{2}}+\frac{g}{b}(x-a)=0,(\mathrm{a}, \mathrm{b}$ and g being positive constants) and $\mathrm{x}=\mathrm{a}^{\prime}$ and $\frac{d x}{d t}=0$ when $\mathrm{t}=0$, show that $x=a+\left(a^{\prime}-a\right) \cos \sqrt{\frac{g}{b}} t$.
volve $\left(\mathrm{D}^{2}-4 \mathrm{D}+4\right) \mathrm{y}=8 \mathrm{x}^{2} \mathrm{e}^{2 \mathrm{x}} \sin 2 \mathrm{x}$, where, $D=\frac{d}{d x}$.

1995

Solve $\left(2 x^{2}+3 y^{2}-7\right) x d x-\left(3 x^{2}+2 y^{2}-8\right) y d y=0$.
Test whether the equation $(x+y)^{2} d x-\left(y^{2}-2 x y-x^{2}\right) d y$ $=0$ is exact and hence solve it.
Solve $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 \mathrm{y}=10\left(x+\frac{1}{x}\right)$.
(1998) Determine all real valued solutions of the equation

$$
y^{\prime \prime \prime}-i y^{\prime \prime}+y^{\prime}-i y=0, y^{\prime}=\frac{d y}{d x} .
$$

Find the solution of the equation $y^{\prime \prime}+4 y=8 \cos 2 x$ given that $y=0$ and $y^{\prime}=2$ when $x=0$.

Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 \mathrm{y}+37 \sin 3 \mathrm{x}=0$. Find the value of y when $x=\pi / 2$, if it is given that $\mathrm{y}=3$ and $\frac{d y}{d x}=0$ when $\mathrm{x}=0$.

Solve $\frac{d^{4} y}{d x^{4}}+2 \frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}=\mathrm{x}^{2}+3 \mathrm{e}^{2 \mathrm{x}}+4 \sin \mathrm{x}$.
Solve $x^{3} \frac{d^{3} y}{d x^{3}}+3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x+\log x$.

1997

\checkmark Solve the initial value problem $\frac{d y}{d x}=\frac{x}{x^{2} y+y^{3}}$, $\mathrm{y}(0)=0$.
v Solve $\left(x^{2}-y^{2}+3 x-y\right) d x+\left(x^{2}-y^{2}+x-3 y\right) d y=0$.
\checkmark Solve $\frac{d^{4} y}{d x^{4}}+6 \frac{d^{3} y}{d x^{3}}+11 \frac{d^{2} y}{d x}+6 \frac{d y}{d x}=20 e^{-2 x} \sin x$
\checkmark Make use of the transformation $\mathrm{y}(\mathrm{x})=\mathrm{u}(\mathrm{x}) \sec \mathrm{x}$ to obtain the solution of $y^{\prime \prime}-2 y^{\prime} \tan x+5 y=0 ; \mathrm{y}(0)=0$; $y^{\prime}(0)=\sqrt{6}$.
\checkmark Solve $(1+2 \mathrm{x})^{2} \frac{d^{2} y}{d x^{2}}-6(1+2 \mathrm{x}) \frac{d y}{d x}+16 y=8(1+2 \mathrm{x})^{2}$; $y(0)=0$ and $y^{\prime}(0)=2$.

1998

\checkmark Solve the differential equation $x y-\frac{d y}{d x}=y^{3} e^{-x^{2}}$
v Show that the equation $(4 x+3 y+1) d x+(3 x+2 y+1)$ $d y=0$ represents a family of hyperbolas having as
asymptotes the lines $\mathrm{x}+\mathrm{y}=0 ; 2 \mathrm{x}+\mathrm{y}+1=0$.
(1992)

Solve the differential equation $\mathrm{y}=3 \mathrm{px}+4 \mathrm{p}^{2}$.
\vee Solve $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{4 x}\left(x^{2}+9\right)$.
v Solve the differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=x \sin x$.

1999

v Solve the differential equation

$$
\frac{x d x+y d y}{x d y-y d x}=\left(\frac{1-x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{1 / 2}
$$

\checkmark Solve $\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-2 y=e^{x}+\cos x$.
v By the method of variation of parameters solve the differential equation $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec (a x)$.

2000

\vee Show that $3 \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}-8 y=0$ has an integral

Institute for IAS/ IFoS/ CSIR/ GATE Examinations
which is a polynomial in x . Deduce the general solution.

Reduce $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+\mathrm{Q} y=R$, where $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are functions of x , to the normal form.
Hence solve $\frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(4 x^{2}-1\right) y=-3 e^{x^{2}} \sin 2 x$.

Solve the differential equation $y=x-2 a p+a p^{2}$. Fnd the singular solution and interpret it geometrically.
v Show that $(4 x+3 y+1) d x+(3 x+2 y+1) d y=0$ represents a family of hyperbolas with a common axis and tangent at the vertex.

15
Solve $x \frac{d y}{d x}-y=(x-1)\left(\frac{d^{2} y}{d x^{2}}-x+1\right)$ by the method of variation of parameters.

2001

- A continuous function $y(t)$ satisfies the differential equation
$\frac{d y}{d t}=\left\{\begin{array}{l}1+e^{1-t}, 0 \leq t<1 \\ 2+2 t-3 t^{2}, 1 \leq t \leq 5\end{array}\right.$

If $y(0)=-e$, find $y(2)$.
Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-3 y=x^{2} \log _{e} x$.
Solve $\frac{d y}{d x}+\frac{y}{x} \log _{e} y=\frac{y\left(\log _{e} y\right)^{2}}{x^{2}}$
Find the general solution of $a y p^{2}+(2 x-b) p-y=0, a>o$.
15
Solve $\left(D^{2}+1\right)^{2} y=24 x \cos x$ given that $\mathrm{y}=\mathrm{D} y=D^{2} \mathrm{y}=0$ and $\mathrm{D}^{3} \mathrm{y}=12$ when $\mathrm{x}=0$.
v Using the method of variation of parameters, solve $\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x$.

2002

Solve $x \frac{d y}{d x}+3 y=x^{3} y^{2}$.
Find the values of λ for which all solutions of $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}-\lambda y=0$ tend to zero as $x \rightarrow \infty$.
v Find the value of constant λ such that the following differential equation becomes exact.
$\left(2 x e^{y}+3 y^{2}\right) \frac{d y}{d x}+\left(3 x^{2}+\lambda e^{y}\right)=0$
Further, for this value of λ, solve the equation.
\vee Solve $\frac{d y}{d x}=\frac{x+y+4}{x-y-6}$.
15
v Using the method of variation of parameters, find the solution of $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$ with
$\mathrm{y}(0)=0$ and $\left(\frac{d y}{d x}\right)_{x=0}=0$.
15
$v \quad$ Solve $(\mathrm{D}-1)\left(\mathrm{D}^{2}-2 \mathrm{D}+2\right) \mathrm{y}=\mathrm{e}^{\mathrm{x}}$ where $D=\frac{d}{d x}$.
15

2003

\checkmark Show that the orthogonal trajectory of a system of confocal ellipses is self orthogonal.

Solve $x \frac{d y}{d x}+y \log y=x y e^{x}$.
Solve $\left(\mathrm{D}^{5}-\mathrm{D}\right) \mathrm{y}=4\left(\mathrm{e}^{\mathrm{x}}+\cos \mathrm{x}+\mathrm{x}^{3}\right)$, where $D=\frac{d}{d x}$.
15
\checkmark Solve the differential equation $\left(\mathrm{px}^{2}+\mathrm{y}^{2}\right)(\mathrm{px}+\mathrm{y})=$ $(\mathrm{p}+1)^{2}$ where $p=\frac{d y}{d x}$, by reducing it to Clairaut's form using suitable substitutions.
\vee Solve $\left(1+x^{2}\right) y^{\prime \prime}+(1+x) y^{\prime}+y=\sin 2[\log (1+x)]$. 15
v Solve the differential equation $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sec ^{2} x$ by variation of parameters.

2004

v Find the solution of the following differential equation

$$
\frac{d y}{d x}+y \cos x=\frac{1}{2} \sin 2 x .
$$

$v \quad$ Solve $y\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0$.
\vee Solve $\left(D^{4}-4 D^{2}-5\right) y=e^{x}(x+\cos x)$.
\checkmark Reduce the equation $(\mathrm{px}-\mathrm{y})(\mathrm{py}+\mathrm{x})=2 \mathrm{p}$ where $p=\frac{d y}{d x}$ to Clairaut's equation and hence solve it.

Solve $(\mathrm{x}+2) \frac{d^{2} y}{d x^{2}}-(2 x+5) \frac{d y}{d x}+2 y=(x+1) e^{x}$.
15
Solve the following differential equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}\left(1+x^{2}\right) y=x .
$$

2005

\checkmark Find the orthogonal trejectory of a system of co-axial circles $x^{2}+y^{2}+2 g x+c=0$, where g is the parameter.

12
Solve $x y \frac{d y}{d x}=\sqrt{x^{2}-y^{2}-x^{2} y^{2}-1}$.
12
Solve the differential equation $(x+1)^{4} D^{3}+2(x+1)^{3} D^{2}-$ $(\mathrm{x}+1)^{2} \mathrm{D}+(\mathrm{x}+1) \mathrm{y}=\frac{1}{x+1}$.
\checkmark Solve the differential equation $\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)(1+\mathrm{p})^{2}-2(\mathrm{x}+\mathrm{y})$ $(1+p)(x+y p)+(x+y p)^{2}=0$,
where $p=\frac{d y}{d x}$, by reducing it to Clairaut's form by using suitable substitution.

15
\checkmark Solve the differential equation ($\sin x-x \cos x$) $y^{\prime \prime}-x \sin x y^{\prime}+y \sin x=0$
given that $y=\sin x$ is a solution of this equation. parameters.

2006

Find the family of curves whose tangents form an angle $\pi / 4$ with the hyperbolas $x y=c, c>0$.
Solve the differential eqaution
$\left(x y^{2}+e^{-1 / 3}\right) d x-x^{2} y d y=0$.
Solve $\left(1+y^{2}\right)+\left(x-e^{-\tan ^{-1} y}\right) \frac{d y}{d x}=0$.
\checkmark Solve the equation $x^{2} p^{2}+y p(2 x+y)+y^{2}=0$ using the substituion $y=u$ and $x y=v$ and find its singular solution, where $p=\frac{d y}{d x}$.
\checkmark Solve the differential equation $x^{2} \frac{d^{3} y}{d x^{3}}+2 x \frac{d^{2} y}{d x^{2}}+2 \frac{y}{x}=10\left(1+\frac{1}{x^{2}}\right)$.
v Solve the differential equation $\left(D^{2}-2 D+2\right) y=e^{x} \tan x$, where $D=\frac{d}{d x}$, by the method of variation of parameters. 15

2007

\checkmark Solve the ordinary differential equation $\cos 3 x \frac{d y}{d x}-3 y \sin 3 x=\frac{1}{2} \sin 6 x+\sin ^{2} 3 x, 0<x<\frac{\pi}{2}$.
\checkmark Find the solution of the equation $\frac{d y}{y}+x y^{2} d x=-4 x d x$.
v Determine the general and singular solutions of the equation $y=x \frac{d y}{d x}+a \frac{d y}{d x}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{-1 / 2} \quad$ 'a' being a
\checkmark Obtain the general solution of $\left[D^{3}-6 D^{2}+12 D-8\right]$

$$
\begin{equation*}
y=12\left(e^{2 x}+\frac{9}{4} e^{-x}\right), \text { where } D=\frac{d}{d x} . \tag{15}
\end{equation*}
$$

\vee Solve the equation $2 x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}-3 y=x^{3}$.
15
v Use the method of variation of parameters to find the general solution of the equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=2 e^{x} . \tag{15}
\end{equation*}
$$

2008

\checkmark Solve the differential equation $y d x+\left(x+x^{3} y^{2}\right) d y=0$.
\checkmark Use the method of variation of parameters to find the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-x^{4} \sin x$.

12
v Using Laplace transform, solve the initial value problem $y^{\prime \prime}-3 y^{\prime}+2 y=4 t+e^{3 t}$
with $y(0)=1, y^{\prime}(0)=-1$.
15
v Solve the differential equation

$$
x^{3} y^{\prime \prime}-3 x^{2} y^{\prime}+x y=\sin (\ln x)+1
$$

\vee Solve the equation $y-2 x p+y p^{2}=0$ where $p=\frac{d y}{d x}$.

2009

v Find the Wronskian of the set of functions
$\left\{3 x^{3},\left|3 x^{3}\right|\right\}$
on the interval $[-1,1]$ and determine whether the set is linearly dependent on $[-1,1]$.
\checkmark Find the differential equation of the family of circles in the $x y$-plane passing through $(-1,1)$ and $(1,1)$.

Fidn the inverse Laplace transform of
$F(s)=\ln \left(\frac{s+1}{s+5}\right)$.
Solve:
$\frac{d y}{d x}=\frac{y^{2}(x-y)}{3 x y^{2}-x^{2} y-4 y^{3}}, y(0)=1$.

2010

\checkmark Consider the differential equation

$$
y^{\prime}=\alpha x, x>0
$$

where α is a constant. Show that
(i) if $\phi(x)$ is any solution and $\Psi(\mathrm{x})=\phi(\mathrm{x}) \mathrm{e}^{-\alpha \mathrm{x}}$, then $\Psi(\mathrm{x})$ is a constant;
(ii) if $\alpha<0$, then eyery solution tends to zero as $x \rightarrow \infty$.
\checkmark Show that the diffrential equation
$\left(3 y^{2}-x\right)+2 y\left(y^{2}-3 x\right) y^{\prime}=0$
admits an integrating factor which is a function of $\left(x+y^{2}\right)$.Hence solve the equation.
Verify that
$\frac{1}{2}(M x+N y) d\left(\log _{e}(x y)\right)+\frac{1}{2}(M x-N y) d\left(\log _{e}\left(\frac{x}{y}\right)\right)$
$=M d x+N d y$
Hence show that-
(i) if the differential equation $M d x+N d y=0$ is homogeneous, then $(\mathrm{Mx}+\mathrm{Ny})$ is an integrating factor unless $M x+N y \equiv 0$;
(ii) if the differential equation
$M d x+N d y=0$ is not exact but is of the form
$f_{1}(x y) y d x+f_{2}(x y) x d y=0$
then $(M x-N y)^{-1}$ is an integrating factor unless
$M x-N y \equiv 0$.
v Show that the set of solutions of the homogeneous linear differential equation
$y^{\prime}+p(x) y=0$
on an interval $I=[a, b]$ forms a vector subspace W of the real vector space of continous functions on I. what is the dimension of W?.

20
v Use the method of undetermined coefficiens to find the particular solution of

$$
y^{\prime \prime}+y=\sin x+\left(1+x^{2}\right) e^{x}
$$

and hence find its general solution.

2011

v Obtain the soluton of the ordinary differential equation $\frac{d y}{d x}=(4 x+y+1)^{2}$, if $y(0)=1$.
\vee Determine the orthogonal trajectory of a family of curves represented by the polar equation $r=a(1-\cos \theta),(r, \theta)$ being the plane polar coordinates of any point.
v Obtain Clairaut's orm of the differential equation $\left(x \frac{d y}{d x}-y\right)\left(y \frac{d y}{d x}+y\right)=a^{2} \frac{d y}{d x}$. Also find its general solution.
v Obtain the general solution of the second order ordinary differential equation $y^{\prime \prime}-2 y^{\prime}+2 y=x+e^{x} \cos x$, where dashes denote derivatives w.r. to x . 15
v Using the method of variation of parameters, solve the second order differedifferential equation $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.
v Use Laplace transform method to solve the following initial value problem:

$$
\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+x=e^{t}, x(0)=2 \text { and }\left.\frac{d x}{d t}\right|_{t=0}=-1
$$

